Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA/NOAA GOES-13 satellite movie shows how Tropical Storm Arlene formed

30.06.2011
Have you ever seen a low pressure area develop into a full-fledged tropical storm? The GOES-13 satellite has and now you can see it in a new animation released today from NASA and NOAA.

System 95L strengthened and became the Atlantic Ocean hurricane season's first tropical storm, named Arlene. It happened at 8 p.m. EDT on June 27 in the southwestern Gulf of Mexico, and the GOES-13 satellite caught the storm coming together.


This visible image of Arlene was taken from the GOES-13 satellite on June 29 at 11:31 UTC (7:30 a.m. EDT) and shows the storm just off the northeastern coast of Mexico. Credit: NASA/NOAA GOES Project, Dennis Chesters

The Geostationary Operational Environmental Satellite called GOES-13 provides continuous visible and infrared imagery of the eastern U.S. and Atlantic Ocean basin from its position in space. GOES satellites are operated by NOAA, and the NASA GOES Project located at NASA's Goddard Space Flight Center in Greenbelt, Md. creates images and compiled them into the video of the storm as it developed from June 27 to June 28.

The animation includes sped-up infrared and visible frames of data from the GOES-13 satellite and is squeezed down to 25 seconds. The movie shows satellite imagery that was captured in 15 minute intervals from June 27 at 11:15 UTC (7:15 a.m. EDT/6:15 a.m. CDT) until June 28 at 1115 UTC (7:15 a.m. EDT/6:15 a.m. CDT) taking the viewer from the time Arlene was the low pressure area called System 95L to the time she formed off of Mexico's northeastern coastline.

On June 27 when the animation begins at 1115 UTC, it's difficult to pinpoint a center of circulation for System 95L as it was over the Yucatan Peninsula. As the animation goes on, by 1931 UTC (3:31 p.m. EDT) you can start to see the circulation, and the middle of the storm becomes apparent as it moved into the southwestern Gulf of Mexico where it strengthened.

Arlene formed at 8 p.m. EDT on June 28 in the southwestern Gulf of Mexico after it crossed the Yucatan Peninsula as a low pressure system, previously known as System 95L. At that time, its maximum sustained winds were near 40 mph (65 kmh) and it was about 240 miles (380 km) east of Tuxpan, Mexico near 21.2 North and 93.7 West.

Twelve hours later at 8 a.m. EDT on June 28, its sustained winds remained at 40 mph, and it had moved closer to the Mexican coast. Arlene was located about 17 miles (280 km) east of Tampico, Mexico near 21.8 North and 9.2 West. It was moving to the west-northwest near 8 mph (13 kmh) and had a minimum central pressure of 1002 millibars.

Watches and warnings are in effect for northeastern Mexico today as Arlene creeps closer to a landfall in that country. A tropical storm warning is in effect from Barra De Nautla north to Bahia Algodones. Tropical Storm conditions are expected within 24 hours (from 8 a.m. EDT) in that area.

NOAA's National Hurricane Center (NHC) noted that Arlene is expected to produce copious amounts of rainfall between 4 to 8 inches and as much as 15 inches in mountainous areas, which could cause flash flooding and mudslides. Winds are expected to be at tropical storm strength along the coastline, and as Arlene moves inland those winds are expected to weaken. Coastal areas also need to heed a storm surge that could raise water levels by 1 to 2 feet above normal, according to the NHC.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht 558 million-year-old fat reveals earliest known animal
21.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Glacial engineering could limit sea-level rise, if we get our emissions under control
20.09.2018 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

 
Latest News

Astrophysicists measure precise rotation pattern of sun-like stars for the first time

21.09.2018 | Physics and Astronomy

Brought to light – chromobodies reveal changes in endogenous protein concentration in living cells

21.09.2018 | Life Sciences

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>