Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA mission sending unmanned aircraft over hurricanes this year

04.06.2012
Beginning this summer and over the next several years, NASA will be sending unmanned aircraft dubbed "severe storm sentinels" above stormy skies to help researchers and forecasters uncover information about hurricane formation and intensity changes.

Several NASA centers are joining federal and university partners in the Hurricane and Severe Storm Sentinel (HS3) airborne mission targeted to investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin.


The mission logo for the Hurricane and Severe Storm Sentinel (HS3) airborne mission. HS3 will investigate the processes that underlie hurricane formation and intensity change in the Atlantic Ocean basin. Credit: NASA

NASA's unmanned sentinels are autonomously flown. The NASA Global Hawk is well-suited for hurricane investigations because it can over-fly hurricanes at altitudes greater than 60,000 feet with flight durations of up to 28 hours - something piloted aircraft would find nearly impossible to do. Global Hawks were used in the agency's 2010 Genesis and Rapid Intensification Processes (GRIP) hurricane mission and the Global Hawk Pacific (GloPac) environmental science mission.

"Hurricane intensity can be very hard to predict because of an insufficient understanding of how clouds and wind patterns within a storm interact with the storm's environment. HS3 seeks to improve our understanding of these processes by taking advantage of the surveillance capabilities of the Global Hawk along with measurements from a suite of advanced instruments," said Scott Braun, HS3 mission principal investigator and research meteorologist at NASA's Goddard Space Flight Center in Greenbelt, Md.

HS3 will use two Global Hawk aircraft and six different instruments this summer, flying from a base of operations at Wallops Flight Facility in Virginia.

"One aircraft will sample the environment of storms while the other will measure eyewall and rainband winds and precipitation," Braun said. HS3 will examine the large-scale environment that tropical storms form in and move through and how that environment affects the inner workings of the storms.

HS3 will address the controversial role of the hot, dry, and dusty Saharan Air Layer in tropical storm formation and intensification. Past studies have suggested that the Saharan Air Layer can both favor or suppress intensification. In addition, HS3 will examine the extent to which deep convection in the inner-core region of storms is a key driver of intensity change or just a response to storms finding favorable sources of energy.

The HS3 mission will operate during portions of the Atlantic hurricane seasons, which run from June 1 to November 30. The 2012 mission will run from late August through early October.

The instruments to be mounted in the Global Hawk aircraft that will examine the environment of the storms include the scanning High-resolution Interferometer Sounder (S-HIS), the Advanced Vertical Atmospheric Profiling System (AVAPS) also known as dropsondes, and the Cloud Physics Lidar (CPL). The Tropospheric Wind Lidar Technology Experiment (TWiLiTE) Doppler wind lidar will likely fly in the 2013 mission.

Another set of instruments will fly on the Global Hawk focusing on the inner region of the storms. Those instruments include the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP) conically scanning Doppler radar, the Hurricane Imaging Radiometer (HIRAD) multi-frequency interferometric radiometer, and the High-Altitude Monolithic Microwave Integrated Circuit Sounding Radiometer (HAMSR) microwave sounder. Most of these instruments represent advanced technology developed by NASA, that in some cases are precursors to future satellite sensors.

NASA's Science Mission Directorate Global Hawk aircraft will deploy to Wallops Flight Facility from their home base at NASA's Dryden Flight Research Center on Edwards Air Force Base, Calif.

"HS3 marks the first time that NASA's Global Hawks will deploy away from Dryden for a mission, potentially marking the beginning of an era in which they are operated regularly from Wallops," said Paul Newman, atmospheric scientist at NASA Goddard and deputy principal investigator on the HS3 mission.

NASA's Science Mission Directorate in Washington is establishing a Global Hawk operations center for science operations from Wallops.. "With the Global Hawks at NASA Dryden in California, NASA Wallops will become the 'Global Hawk - Eastern' science center," Newman said.

From rockets studying the upper atmosphere to unmanned aircraft flying over hurricanes, NASA's Wallops Flight Facility is fast becoming a busy place for science. Wallops is one of several NASA centers involved with the HS3 mission. Others include Goddard, Dryden, Ames Research Center, Marshall Space Flight Center, and the Jet Propulsion Laboratory.

The HS3 mission is funded by NASA Headquarters and managed by NASA's Earth System Science Pathfinder Program at NASA's Langley Research Center, Hampton, Va. The HS3 mission also involves collaborations with various partners including the National Centers for Environmental Prediction, Naval Postgraduate School, Naval Research Laboratory, NOAA's Hurricane Research Division and Earth System Research Laboratory, Northrop Grumman Space Technology, National Center for Atmospheric Research, State University of New York at Albany, University of Maryland - Baltimore County, University of Wisconsin, and University of Utah.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Cause for variability in Arctic sea ice clarified
14.05.2019 | Max-Planck-Institut für Meteorologie

nachricht Arctic rivers provide fingerprint of carbon release from thawing permafrost
08.05.2019 | Stockholm University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

Im Focus: Recording embryonic development

Scientists develop a molecular recording tool that enables in vivo lineage tracing of embryonic cells

The beginning of new life starts with a fascinating process: A single cell gives rise to progenitor cells that eventually differentiate into the three germ...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Cement as a climate killer: Using industrial residues to produce carbon neutral alternatives

20.05.2019 | Materials Sciences

When bees are freezing

20.05.2019 | Life Sciences

Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth

20.05.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>