Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Measures Typhoon Hagupit's Philippine Rainfall from Space

10.12.2014

As of Dec. 8, Super Typhoon Hagupit has caused up to 27 deaths. Early reports indicate the Philippines has been spared the widespread destruction caused by Super Typhoon Haiyan in 2013. Hagupit (called Ruby in the Philippines) forward motion slowed on December 4, 2014 before reaching the Philippines. After hitting Samar in the eastern Philippines Hagupit's continued slow movement resulted in high rainfall amounts along the typhoon's track. These high rainfall totals meant that flooding occurred frequently along the typhoon's track.


This analysis of rainfall from Dec. 1-8, 2014 showed rainfall totals of over 450 mm (17.5 inches) in a few areas in the eastern Philippines near where Hagupit came ashore. Rainfall amounts of over 200mm (almost 8 inches) were common.

Image Credit: NASA/JAXA, SSAI, Hal Pierce

When NASA/Japan Aerospace Exploration Agency's Tropical Rainfall Measuring Mission (TRMM) satellite flew over Hagupit on December 8, 2014 at 0132 UTC (Dec. 7 at 8:32 p.m. EST) its Microwave Imager (TMI) instrument collected data used in a rainfall analysis. The slow moving typhoon had weakened to a tropical storm but was still dropping light to moderate rainfall. Its center appeared to be in the northern Sibuyan Sea, located between the islands of the central and northern Philippines.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland the TRMM science team created a preliminary analysis of rainfall from December 1 through 8, 2014) using merged satellite rainfall data (from TRMM and other satellites) Rainfall totals of over 450 mm (17.5 inches) were found in a few areas in the

eastern Philippines near where Hagupit came ashore. Rainfall amounts of over 200mm (almost 8 inches) were common.

The International Space Station-RapidScat instrument captured data on Hagupit's winds on Dec. 8 at 08:30 UTC (3:30 a.m. EST/4:30 p.m. Manila local time). The RapidScat image showed sustained winds of 45 to 50 mph east of Luzon, over the Philippine Sea.

On Dec. 8 at 05:35 UTC NASA's Aqua satellite saw the center of Tropical Storm Hagupit in the South China Sea, east of the Philippines Region IV-B of Mimaropa.

By 1500 UTC (10 a.m. EST/11 p.m. local Manila time) on Dec. 8, Hagupit's maximum sustained winds had dropped to 40 knots (46 mph/74 kph). It was centered near 13.4 north longitude and 118.1 east latitude. That's about 157 nautical miles (181 miles/291 km) west-southwest of Manila and in the South China Sea. Hagupit was moving to the west at 7 knots (8 mph/13 kph) and is expected turn to the west-southwest over the next two days.

Hagupit is expected to maintain tropical storm strength over the next day before weakening to a tropical depression upon its approach to southern Vietnam. Forecasters at the Joint Typhoon Warning Center expect that the storm will make landfall near Ho Chi Minh City, Vietnam as a depression early on Dec. 12.

Rob Gutro
NASA's Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov/content/goddard/hagupit-northwestern-pacific-ocean/

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>