Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA Infrared Satellite Instrument Sees Tropical Storm Iggy Growing in Strength

27.01.2012
The AIRS infrared instrument that flies on NASA's Aqua satellite has been providing forecasters with the cloud top temperatures in the Southern Indian Ocean's ninth tropical cyclone, which has officially been renamed Iggy. AIRS data showed that the area of strong thunderstorms around Iggy's center has expanded in area over the last day.

The Atmospheric Infrared Sounder (AIRS) instrument provided an infrared snapshot of Iggy's cloud top temperatures on January 26, 2012 at 0611 UTC (1:11 a.m. EST). The AIRS image showed a large and rounded area of high, cold clouds, around the entire center of circulation.


When NASA's Aqua satellite passed over Cyclone Iggy (left) on January 26 at 611 UTC (1:11 a.m. EST) the AIRS instrument measured the cloud (purple) top temperatures. Thunderstorm cloud tops around the entire center of circulation were colder than -63 Fahrenheit (-52.7 Celsius) indicating strong storms. The purple area to the far right is from clouds and showers associated with a low pressure area south-southwest of Darwin, Australia. Credit: NASA/JPL, Ed Olsen

The data also showed that strongest convection (rapidly rising air that condenses and forms the thunderstorms that make up the cyclone) is located slightly to the west of the center, because of easterly wind shear. The temperatures of those high cloud tops were colder than -63 Fahrenheit (-51.7 Celsius), which is a threshold scientists use to identify strong thunderstorms with heavy rainfall. This is an indication that Iggy will continue to strengthen.

The AIRS image also showed clouds to the southeast of Iggy that are associated with another low pressure area. That area of disturbed weather is over land and located south-southwest of Darwin.

Iggy is currently located in the Southern Indian Ocean, northwest of Western Australia. At 1500 UTC (10 a.m. EST), Tropical Cyclone Iggy was about 430 nautical miles (~495 miles/~796 km) northwest of Learmonth, Australia, near 16.8 South and 109.0 East. It was moving slowly to the southeast at 5 knots (~6 mph/~9 kph). Iggy's maximum sustained winds are near 45 knots (~52 mph/~83 kph) and it is classified as a tropical storm. Those tropical-storm-force winds extend out to 110 miles (177 km) from the center.

Iggy's approach has prompted the Australian Bureau of Meteorology to issue a cyclone and flood watch. Iggy is moving toward the Pilbara coast. The coastal communities between Whim Creek and Coral Bay will likely experience gusty winds and heavy rainfall on January 27 and 28. Rough surf is also expected along coastal areas including Christmas Island, the Kimberley and Pilbara coasts.

Iggy is forecast to continue strengthening as it moves southeast toward Western Australia. Sea surface temperatures along track are 28 to 29 degrees Celsius (~82 to ~84 Fahrenheit), which the Joint Typhoon Warning Center says is supportive of further development. It is expected to reach cyclone strength before moving to the south.

Text Credit: Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Iggy.html

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>