Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA completes critical design review of Landsat data continuity mission

02.06.2010
The Landsat Data Continuity Mission (LDCM) reached a major milestone last week when it successfully completed its Mission Critical Design Review (CDR).

From May 25-27, an independent review board chaired by Steve Jurczyk, Deputy Director at NASA's Langley Research Center, Hampton, Va., met at NASA's Goddard Space Flight Center in Greenbelt, Md. to conduct the review. The CDR certifies that the maturity of the LDCM design is appropriate to support proceeding with full-scale fabrication, assembly, integration, and test of the mission elements leading to observatory integration and test.

"This review highlighted the collective efforts of a dedicated NASA, U.S. Geological Survey, and industry team working diligently towards the development, launch, and operation of the LDCM," said Bill Ochs, LDCM project manager.

LDCM NASA and industry personnel addressed a variety of topics, including the LDCM spacecraft and its instrument payload, system-level test plans for flight hardware and software, systems engineering, mission assurance, the ground system, and science.

NASA plans to launch LDCM in December 2012 as the follow-on to Landsat-5, launched in 1984, and Landsat-7, launched in 1999. Both satellites continue to supply images and data, but they are operating beyond their design lives. As with preceding Landsat missions, the U.S. Geological Survey will operate LDCM and maintain its data archive once it reaches orbit and begins operational observations. LDCM will extend Landsat's unparalleled record of Earth's changing landscapes.

"We provide data critical to observing dramatic ongoing changes to the global land surface and to understanding the impact of land use change on climate, food and fiber production, water resources, national security, and many other important societal issues," said David Hair, project manager, U.S. Geological Survey, Sioux Falls, S.D.

LDCM will carry evolutionary technology that will improve performance and reliability of the mission," said Jim Irons, LDCM NASA project scientist at Goddard.

The LDCM spacecraft (provided by Orbital Sciences Corp., Gilbert, Ariz) will carry two instruments, the Operational Land Imager (OLI) and the Thermal Infrared Sensor (TIRS). OLI, now being developed by Ball Aerospace & Technologies Corp. will capture images for nine spectral bands in the shortwave portion of the spectrum (visible, near infrared, and shortwave infrared). The Goddard-built TIRS will coincidently collect data for two longwave (thermal) spectral bands. The LDCM ground system will merge the data from both sensors into a single multispectral image product. These data products will be available for free to the general public from the USGS enabling a broad scope of scientific research and land management applications.

For more than 30 years, Landsat satellites have collected data of Earth's continental surfaces to support global change research and applications. This data constitutes the longest continuous record of the Earth's surface as seen from space.

NASA's Goddard Space Flight Center procures and manages the acquisition of the LDCM in partnership with the Department of the Interior's U.S. Geological Survey. NASA will turn over management of the LDCM satellite to the USGS after launch and on-orbit checkout.

For more information about LDCM, visit:
http://ldcm.nasa.gov/

Sarah Dewitt | EurekAlert!
Further information:
http://www.nasa.gov
http://ldcm.nasa.gov/

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>