Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA caught Tropical Storm Rina forming, strengthening

25.10.2011
NASA's Tropical Rainfall Measuring Mission satellite called "TRMM" and NASA's Aqua satellite captured radar and temperature data that showed Tropical Storm Rina forming in the western Caribbean Sea yesterday. Today, Rina continues strengthening.

The National Hurricane Center (NHC) upgraded an area of disturbed weather in the Caribbean to tropical depression eighteen and then to tropical storm Rina on October 23, 2011. The TRMM satellite flew over the forming tropical cyclone on October 23, 2011 at 1728 UTC (1:28 p.m. EDT).


This infrared image of the eastern half of Tropical Storm Rina was taken on Oct. 24 at 2:47 a.m. EDT from the AIRS instrument on NASA's Aqua satellite. It shows a very large area of strong convection and thunderstorms around the center (purple) of circulation. Cloud top temperatures were colder than -63F (-52C) in that area, indicating strong thunderstorms and heavy rainfall. Credit: NASA/JPL, Ed Olsen

Data from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) was used to create a rainfall image from the TRMM team at NASA's Goddard Space Flight Center in Greenbelt, Md. The rainfall image showed that the future storm already was well organized and had a large area of heavy rainfall extending toward the northeast from eastern Honduras. Up until the morning hours (local time) on Monday, October 24, Honduras had a tropical storm watch in effect for its northeastern coast. That watch was dropped by 10 a.m. EDT as Rina moved away.

Today, Oct. 24, that rainfall is affecting the northeastern coast of Honduras and Cayman Islands. The NHC said "Rina is expected to produce total rain accumulations of 1 to 3 inches along the northeast coast of Honduras. Rainfall amounts of 2 to 4 inches are possible over the Cayman Islands."

At 11 a.m. EDT on Oct. 24, Rina's maximum sustained winds were near 45 mph (75 kmh). Those tropical storm-force winds extend out 85 miles (140 km) from the center, making Rina a small tropical storm over 170 miles in diameter.

Rina is in an environment with warm water (over the 80F/26.6C threshold needed to maintain a tropical cyclone) and low wind shear. It is centered near 17.1 North latitude and 82.9 West longitude, which is about 190 miles (305 km) southwest of Grand Cayman and 370 miles (595 km) east-southeast of Chetumal, Mexico. Rina was moving to the northwest at 6 mph (9 kmh). Minimum central pressure is 1001 millibars.

When NASA's Aqua satellite passed over Rina earlier today at 2:47 a.m. EDT the Atmospheric Infrared Sounder (AIRS) instrument took an infrared reading of Rina's cloud top temperatures. The colder the cloud top temperatures, the higher and stronger they are. AIRS temperature data showed a very large area of strong convection and thunderstorms around the center of circulation where cloud top temperatures were colder than -63F (-52C). Those temperatures indicate strong thunderstorms and heavy rainfall. AIRS infrared data showed that Rina continues to become better organized. The AIRS data was created into a color-coded image at NASA's Jet Propulsion Laboratory in Pasadena, Calif.

There are a couple of factors steering Rina through the Caribbean Sea. In the mid-level of the atmosphere there's a ridge (elongated area) of high pressure building over the northern Gulf of Mexico, which is expected to turn Rina to the west-northwest. The NHC noted that as the ridge moves eastward in a couple of days, it will take Rina northwest, then northward. The NHC expects Rina to become a hurricane tomorrow.

Images and video of the birth of Tropical Storm Rina at: http://www.nasa.gov/mission_pages/hurricanes/archives/2011/h2011_Rina.html ALSO on Facebook and Twitter as NASAHurricane

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>