Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA gets 2 infrared views of tropical storms Nadine, Oscar

05.10.2012
NASA's Aqua satellite provided two different infrared views of the two tropical storms swirling in the Atlantic Ocean. Oscar is battling wind shear that appears destined to tear it apart, while Nadine is merging with a cold front.

NASA's Aqua satellite passed over both Tropical Storm Nadine and Tropical Depression 15 (TD15) on Oct. 3 at 1553 UTC (11:53 a.m. EDT), before TD15 became Tropical Storm Oscar. While overhead, the Atmospheric Infrared Sounder (AIRS) instrument aboard Aqua captured two different images of both storms. One image was near infrared and almost visible light, while the other was infrared.


NASA's Aqua satellite passed over both Tropical Storm Nadine and Tropical Storm Oscar on Oct. 3 at 1553 UTC (11:53 a.m. EDT) and captured a near infrared (almost visible) (left) and infrared image (right) of both storms. A cold front (top left) is expected to merge with Nadine.

Credit: NASA JPL, Ed Olsen

The near infrared image on Oct. 3 provided a look at the cloud cover and the cloud top temperatures as well as the sea surface temperatures. Most of the strongest thunderstorms were identified in infrared imagery by the coldest cloud top temperatures (meaning that they are higher in the atmosphere where temperatures are colder). Strongest storms in Oscar were located east of the center of circulation. That's because wind shear was pushing them away from the center, and that wind shear would continue to batter the storm again on Oct. 4.

Nadine wasn't even showing any high, powerful thunderstorms. Although the circulation of Nadine could be seen on the near-infrared, almost visible image, there were no strong storms around the circulation center.

Tropical Storm Oscar Stretching Out

Tropical Depression 15 strengthened into Tropical Storm Oscar at 11 p.m. EDT on Oct. 3, 2012. On Oct. 4, Oscar's maximum sustained winds were near 40 mph (65 kph). The National Hurricane Center doesn't expect much change in Oscar in the near term, before things get worse for the storm. Oscar's center was 1,245 miles 2,005 km west-northwest of the Cape Verde Islands, near latitude 20.0 North and longitude 42.5 West. Oscar is moving toward the north-northwest near 9 mph (kph) and is expected to turn north, followed by a turn to the northeast on Oct. 5.

Infrared imagery showed that although strong convection and thunderstorms have increased in intensity and coverage during the morning on Oct. 4, the bulk of them are east of the center because of westerly wind shear between 15 and 20 knots. The storm was not symmetric as a result of the wind shear. A storm needs to be symmetric to strengthen, and the wind shear is preventing that from occurring. As a result, the National Hurricane Center expects Oscar to become an open trough (elongated area) of low pressure by late Friday, Oct. 5.

Tropical Storm Nadine Being Chased by a Cold Front

Tropical Storm Nadine is becoming associated with a nearby cold front that appeared on near-infrared and infrared imagery as a strong wedge of clouds with cold cloud top temperatures. That front was moving toward Nadine from the northwest.

In the meantime, a Tropical Storm Warning for the Azores was still in effect. At 8 a.m. EDT on Oct. 4, Tropical Storm Nadine had maximum sustained winds near 45 mph (75 kph). Nadine was located near latitude 39.0 North and longitude 27.2 West, just 20 miles (30 km) north-northwest of Lajes in the Azores. Nadine is moving to the northeast at 23 mph (37kph) and is losing tropical characteristics. The National Hurricane Center expects Nadine to become post-tropical later in the day, on Oct. 4, Thursday.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>