Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM Satellite sees Typhoon Roke intensify rapidly before landfall in Japan

22.09.2011
The Tropical Rainfall Measuring Mission (TRMM) satellite captured rainfall and cloud data from Typhoon Roke as it rapidly intensified before making landfall in Japan earlier today.

Typhoon Roke followed a looping path for five days while maintaining tropical-storm strength prior to intensifying to typhoon-strength at 12 UTC (8 a.m. EDT) on September 19, 2011.


This large-scale image provides context for the 3D radar data (in gray) by showing the three-day surface rainfall accumulation (rainbow colors) along the track of the storm (gray line). Also shown is the significant rainfall accumulation (over 200 mm or ~8 inches) over the Japanese Island of Kyushu to the north of Typhoon Roke. Credit: Credit: NASA/TRMM/Owen Kelley

When the TRMM satellite flew over Typhoon Roke, it was in the process of rapidly intensifying from a Category 1 to 3 storm on the Saffir-Simpson scale (that measures hurricane/typhoon intensity). Owen Kelley of the TRMM team at NASA's Goddard Space Flight Center in Greenbelt, Md. created a large-scale image that provides context for 3-D radar data by showing the three-day surface rainfall accumulation along the track of the storm. The image also showed significant rainfall accumulation (over 200 mm or ~8 inches) over the Japanese Island of Kyushu to the north of Typhoon Roke.

This rain system continued to interact with Typhoon Roke in the subsequent 24 hours as Typhoon Roke continued moving north toward Japan's largest Island, Honshu.

The second image Kelley created zooms into the inner core of Typhoon Roke during a period of rapid intensification, seen by the TRMM satellite at 1351 UTC (9:51 a.m. EDT) on September 19, 2011.

That image showed cloud-top temperatures seen by the infrared instrument on the TRMM satellite and revealed where clouds were shallow, where they reach above the freezing level, and powerful thunderstorms that approached the tropopause indicating vigorous convection (rapidly rising air that form thunderstorms that power a tropical cyclone).

By creating an image in 3-D precipitation, becomes visible in the storm clouds. The 3-D image depicted rainfall and cloud height. The 3-D image was color coded where green tinting indicated precipitation reaching an altitude of 8.5 km (5.2 miles) and yellow tinting indicates an altitude of 11 km (6.8 miles). These altitudes are far above the freezing level that is typically near 5 km (3.1 miles) altitude in the tropics. When air rises more than a kilometer or so the freezing level, any moisture that condenses is likely to form ice hydrometeors instead of liquid hydrometeors and thereby release additional latent heat that may help fuel the storm.

This particular overflight of Typhoon Roke showed a remarkably well-organized circular eyewall especially for a typhoon that was classified at merely tropical-storm strength earlier the same day. However, other aspects of the TRMM radar data suggest modest intensity. Specifically, there is almost no radar reflectivity above 45 dBZ, and the inner volume of >42 dBZ is very small in the circular eyewall. A larger volume of strong reflectivity would indicate the formation of large ice hydrometeors or extremely heavy liquid precipitation. Either event would be evidence of very vigorous updrafts. Also, there was a complete absence of lightning flashes in either the eyewall or in the rainband to the east of the eyewall, based on observations by the TRMM Lightning Imaging System (LIS).

TRMM is managed by both NASA and the Japanese Space Agency, JAXA.

By 11:18 a.m. EDT (15:18 UTC) on Sept. 21, the southern edge of Roke was passing over Tokyo, while the northern extent stretched past Sapporo far to the north.

The Japan Meteorological Agency reported sustained winds of 103 mph (167 kph) and heavy rainfall in Japan's Tokai and Kanto regions earlier today. News reports have attributed four deaths to the storm and noted that rainfall had occurred at 2 inches (50 millimeters) per hour, confirming the data from the TRMM satellite. Roke is expected to re-emerge over water and transition into an extra-tropical storm later today.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

Further reports about: 3-D image EDT Goddard Space Flight Center Roke TRMM satellite Typhoon UTC satellites

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>