Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM satellite sees birth of Arabian Sea cyclone

25.10.2012
NASA's TRMM satellite measured rainfall and towering clouds within the Arabian Sea's first tropical cyclone of the season as it passed overhead from space. Meanwhile, the infrared AIRS instrument aboard NASA's Aqua satellite noticed that strong thunderstorms surrounded the center of the storm. Tropical Cyclone 1A is expected to be short-lived as it heads for a landfall in Somalia on Oct. 25.

Since it was launched in 1997 the Tropical Rainfall Measuring Mission (TRMM) satellite has been useful for monitoring tropical cyclones in the tropics. TRMM passed above the first tropical cyclone of 2012 (TC01A) as it was forming in the Arabian Sea on October 2012 at 1513 UTC (11:13 a.m. EDT). Rainfall from TRMM's Microwave Imager (TMI) and Precipitation Radar (PR) were overlaid on an enhanced infrared image from TRMM's Visible and InfraRed Scanner (VIRS) to provide a complete picture of rainfall rates occurring within the storm.


TRMM passed above the first tropical cyclone of 2012 as it was forming in the Arabian Sea on October 2012 at 11:13 a.m. EDT. TRMM saw that rain at the surface was falling at a rate of up to 41 mm/hour (~1.6 inches) and thunderstorms within were reaching heights of over 16 km (~9.9 miles).

Credit: SSAI/NASA, Hal Pierce

TRMM PR and TMI data showed that rain at the surface was falling at a rate of up to 41 mm/hour (~1.6 inches) in the forming tropical cyclone. Bands of thunderstorms were also wrapping tightly into a well-defined low level center of circulation. TRMM PR data also was also used to create a 3-D image that showed the vertical structure of convective storms in the area. The view showed some towering convective storms were reaching heights of over 16 km (~9.9 miles).

Another satellite passed over TC01A and captured infrared data on the storm, revealing temperature of cloud tops. The colder the cloud top, the higher the thunderstorm is in the atmosphere, and the more powerful the storm. The Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua satellite captured infrared imagery of Tropical Storm 01A on Oct. 24 at 5:35 a.m. EDT (0935 UTC) that showed the strongest thunderstorms surrounded the center of circulation. Those thunderstorms were reaching high into the troposphere where cloud top temperatures are as cold as -63 Fahrenheit (-52 Celsius).

On Oct. 24 at 1500 UTC (11 a.m. EDT), TC01A had maximum sustained winds near 35 knots (~40 mph). It was located about 300 nautical miles east-southeast of Cape Guardafui, Somalia, near 10.4 North latitude and 55.7 East longitude. TC01A was moving to the west at 16 knots and is expected to move to the west-southwest over the next couple of days before making landfall south of Cape Guardafui, Somalia. Cape Guardafui is located in the northeastern Bari province and forms the geographical point of the Horn of Africa.

Tropical cyclone 01A is predicted by the U.S. Navy Joint Typhoon Warning Center (JTWC) to hit northeastern Somalia on October 25, 2012 with wind speeds of about 35 knots (~40 mph).

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

More articles from Earth Sciences:

nachricht Do ice cores help to unravel the clouds of climate history?
21.06.2019 | Leibniz Institute for Tropospheric Research (TROPOS)

nachricht News from the diamond nursery
21.06.2019 | Goethe-Universität Frankfurt am Main

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>