Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA's TRMM satellite eyeing Tropical Storm Khanun's rainfall

18.07.2012
The Tropical Rainfall Measuring Mission (TRMM) is keeping an eye on the rainfall being generated by Tropical Storm Khanun as it moves past Kadena Air Base, Okinawa, Japan.

The TRMM satellite had an excellent daytime look at Tropical Storm Khanun near Okinawa in the northwestern Pacific Ocean on July 17, 2012 at 0439 UTC (12:39 a.m. EDT/1:39 p.m. Japan). Khanun had estimated wind speeds of over 40 knots (~46 mph) at the time TRMM passed overhead.


RMM's Precipitation Radar (PR) data were used to give a 3-D view of Khanun's rainfall structure of Khanun on July 17, 2012, at 0439 UTC. The 3-D view showed that powerful convective storms near Khanun's center were pushing to heights of about 17 km (~10.6 miles). Credit: Credit: SSAI/NASA, Hal Pierce

The storm was compact but well organized and shows possible eye wall formation. The bulk of the strongest precipitation was occurring in the western semi-circle of the storm.

TRMM's Precipitation Radar (PR) data were used to give a 3-D view of Khanun's rainfall structure. The 3-D view showed that powerful convective storms near Khanun's center were pushing to heights of about 17 kilometers (~10.6 miles).

At 1500 UTC (11 a.m. EDT) on July 17, Khanun's maximum sustained winds had increased to 50 knots (57.5 mph/92.6 kmh). It was located about 95 nautical miles (109 miles/176 km) north-northeast of Kadena Air Base, Okinawa, Japan, near 27.8 North and 128.2 East. Khanun was moving to the northwest near 15 knots (17.2 mph/27.7 kmh). Tropical-storm-force winds extend out to 60 nautical miles (69 miles/111 km) from the center of circulation, so Kadena Air Base was not yet experiencing susatained tropical storm force winds at that time.

Khanun is predicted to slightly increase in power today. It is expected to affect both South and North Korea as it moves northward through the western side of the Yellow Sea over the next couple days.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>