Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiyear Tracking of Atmospheric Radicals

12.09.2018

Researchers developed a new method to derive both short-lived atmospheric hydroxyl and chlorine radical concentrations over several years

Hydroxyl radicals (OH) keep our atmosphere clean. They react away toxic gases such as carbon monoxide (CO), and slow climate warming by removing greenhouse gases like methane (CH4). In some parts of the atmosphere, chlorine radicals (Cl) can also help this purification process, for example in the stratosphere.


The Max Planck Institute for Chemistry deploys an airfreight container with automated scientific apparatus which are connected to an air and particle (aerosol) inlet underneath the aircraft. The Institute uses for the measurements an Airbus A340-600 from Lufthansa. Photo: Stefan Weber

Therefore, scientists are very interested to know how the concentrations of these natural cleaning agents vary over time. Unfortunately, both radicals are extremely difficult to measure directly, as they are highly reactive and present at only extremely low concentrations.

Researchers from the Max Planck Institute for Chemistry in Mainz have now developed a new method to derive both atmospheric OH and Cl concentrations over long periods by using volatile organic compounds. In a paper published recently in Nature Climate and Atmospheric Science, they show how these radicals have varied between 2008 and 2015.

“The trick was to use long-term monthly measurements of three trace gases, sulphur hexafluoride (SF6), methyl chloride (CH3Cl) and methane (CH4),” explains Jonathan Williams, group leader at the Max Planck Institute for Chemistry.

These long-lived gases were measured at 10-12 kilometer height from a specially equipped Lufthansa passenger jet (IAGOS-CARIBIC*), and combined with measurements made at the ground using the NOAA-Earth System Research Laboratory network. SF6, whose concentration is steadily increasing in the atmosphere since the molecule is not depleted, defined how long it has been between the air leaving the surface and being measured from the plane.

Once the scientists knew the “age” of an air parcel, they could estimate how much of a specific compound is oxidized from the moment it left the surface until the measurement. Knowing that CH3Cl reacts mostly with OH radicals and CH4 with both OH and Cl radicals, the Max Planck scientists determined the initial and final concentrations of these gases, allowing the cleaning agent concentrations to be calculated. “One of the nice things about this approach is that the values come from the data directly, without using a complex global model,” says Mengze Li, PhD student at Max Planck Institute for Chemistry.

The concentration of tropospheric OH was found to be on average six times larger than in the lower stratosphere, while the amount of stratospheric Cl radicals was ten times lower than OH. No trend in the data appeared over the seven-year timespan of the measurements. “This stability is reassuring, as strong variations would make the air composition very unstable,” explains Williams. This new method will be useful in tracking future largescale changes in radical concentrations that may occur for example from volcanic eruptions.

* CARIBIC (Civil Aircraft for the regular Investigation of the atmosphere Based on an Instrument Container) is an innovative scientific project to study and monitor important chemical and physical processes in the Earth´s atmosphere. Detailed and extensive measurements are made during long distance flights. The Max Planck Institute for Chemistry deploys an airfreight container with automated scientific apparatus which are connected to an air and particle (aerosol) inlet underneath the aircraft. The Institute uses for the measurements an Airbus A340-600 from Lufthansa.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jonathan Williams
Max Planck Institute for Chemistry Mainz
Telephone: +49(6131)305-4500
E-Mail: Jonathan.Williams@mpic.de

Originalpublikation:

Tropospheric OH and stratospheric OH and Cl concentrations determined from CH4, CH3Cl, and SF6 measurements
Mengze Li, Einar Karu, Carl Brenninkmeijer, Horst Fischer, Jos Lelieveld & Jonathan Williams
npj Climate and Atmospheric Science, volume 1, Article number: 29 (2018)
DOI https://doi.org/10.1038/s41612-018-0041-9

Dr. Susanne Benner | Max-Planck-Institut für Chemie
Further information:
http://www.mpic.de/

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>