Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Multiyear Tracking of Atmospheric Radicals

12.09.2018

Researchers developed a new method to derive both short-lived atmospheric hydroxyl and chlorine radical concentrations over several years

Hydroxyl radicals (OH) keep our atmosphere clean. They react away toxic gases such as carbon monoxide (CO), and slow climate warming by removing greenhouse gases like methane (CH4). In some parts of the atmosphere, chlorine radicals (Cl) can also help this purification process, for example in the stratosphere.


The Max Planck Institute for Chemistry deploys an airfreight container with automated scientific apparatus which are connected to an air and particle (aerosol) inlet underneath the aircraft. The Institute uses for the measurements an Airbus A340-600 from Lufthansa. Photo: Stefan Weber

Therefore, scientists are very interested to know how the concentrations of these natural cleaning agents vary over time. Unfortunately, both radicals are extremely difficult to measure directly, as they are highly reactive and present at only extremely low concentrations.

Researchers from the Max Planck Institute for Chemistry in Mainz have now developed a new method to derive both atmospheric OH and Cl concentrations over long periods by using volatile organic compounds. In a paper published recently in Nature Climate and Atmospheric Science, they show how these radicals have varied between 2008 and 2015.

“The trick was to use long-term monthly measurements of three trace gases, sulphur hexafluoride (SF6), methyl chloride (CH3Cl) and methane (CH4),” explains Jonathan Williams, group leader at the Max Planck Institute for Chemistry.

These long-lived gases were measured at 10-12 kilometer height from a specially equipped Lufthansa passenger jet (IAGOS-CARIBIC*), and combined with measurements made at the ground using the NOAA-Earth System Research Laboratory network. SF6, whose concentration is steadily increasing in the atmosphere since the molecule is not depleted, defined how long it has been between the air leaving the surface and being measured from the plane.

Once the scientists knew the “age” of an air parcel, they could estimate how much of a specific compound is oxidized from the moment it left the surface until the measurement. Knowing that CH3Cl reacts mostly with OH radicals and CH4 with both OH and Cl radicals, the Max Planck scientists determined the initial and final concentrations of these gases, allowing the cleaning agent concentrations to be calculated. “One of the nice things about this approach is that the values come from the data directly, without using a complex global model,” says Mengze Li, PhD student at Max Planck Institute for Chemistry.

The concentration of tropospheric OH was found to be on average six times larger than in the lower stratosphere, while the amount of stratospheric Cl radicals was ten times lower than OH. No trend in the data appeared over the seven-year timespan of the measurements. “This stability is reassuring, as strong variations would make the air composition very unstable,” explains Williams. This new method will be useful in tracking future largescale changes in radical concentrations that may occur for example from volcanic eruptions.

* CARIBIC (Civil Aircraft for the regular Investigation of the atmosphere Based on an Instrument Container) is an innovative scientific project to study and monitor important chemical and physical processes in the Earth´s atmosphere. Detailed and extensive measurements are made during long distance flights. The Max Planck Institute for Chemistry deploys an airfreight container with automated scientific apparatus which are connected to an air and particle (aerosol) inlet underneath the aircraft. The Institute uses for the measurements an Airbus A340-600 from Lufthansa.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jonathan Williams
Max Planck Institute for Chemistry Mainz
Telephone: +49(6131)305-4500
E-Mail: Jonathan.Williams@mpic.de

Originalpublikation:

Tropospheric OH and stratospheric OH and Cl concentrations determined from CH4, CH3Cl, and SF6 measurements
Mengze Li, Einar Karu, Carl Brenninkmeijer, Horst Fischer, Jos Lelieveld & Jonathan Williams
npj Climate and Atmospheric Science, volume 1, Article number: 29 (2018)
DOI https://doi.org/10.1038/s41612-018-0041-9

Dr. Susanne Benner | Max-Planck-Institut für Chemie
Further information:
http://www.mpic.de/

More articles from Earth Sciences:

nachricht Strong storms generating earthquake-like seismic activity
16.10.2019 | Florida State University

nachricht The shelf life of pyrite
14.10.2019 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>