Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Münster researchers provide evidence of liquid water on Mars

28.04.2010
There is still liquid water on Mars – at least, at certain times of the year – and a team of researchers from Münster University’s Institute of Planetology, led by Dr. Dennis Reiss, have demonstrated it.

The team has evaluated high-res pictures from the American space probe "Mars Reconnaissance Orbiter" (MRO) and they show that on the surface of the planet a gully about two metres wide, caused by erosion, has increased in length.

Between November 2006 and May 2009 it lengthened by around 170 metres. “The changes to the gully – especially in its length – are the result of small quantities of water ice melting in spring and the subsequent flow movements of a mixture of water and sand,” is the researchers’ conclusion.

The annual mean temperature on Mars is around minus 60 degrees Celsius, but towards the end of winter it rises and can go above zero. Then, changes on the surface of Mars can be seen. Black areas on the dunes point to carbon dioxide ice which is either thawing or changing directly from a solid to a gaseous state, i.e. undergoing sublimation. In the spring of the first observed year on Mars – a year there lasts 687 days – a small gully caused by erosion in the so-called Russell Crater grew by about 50 metres in length. This was repeated in the spring of the following Mars year. The gully lengthened down the slope by about 120 metres.

... more about:
»Crater »Mars »Planetology »carbon dioxide »water ice

How could these gullies develop? Possible explanations are movements of dry masses or the transportation of dry material influenced by liquid carbon dioxide or liquid water. “We can definitely rule out movements of dry masses due to the morphological characteristics of the canals,” says Dennis Reiss. Also, the gullies show one special feature, namely that become thinner and thinner down the slope. This is a general indication of the fact that some liquid seeping into the soil is likely to be responsible for the development. Carbon dioxide becoming liquid for a short time is ruled out by the researchers. “Evaluation of the spectral data shows that in both years all the carbon dioxide ice had already undergone sublimation before the canal arose,” says PhD student Gino Erkeling.

The most likely explanation in the opinion of the researchers is a small quantity of melting water ice which is protected from sublimation by an overlying layer of carbon dioxide ice. The calculations made by the Münster researchers show that the surface temperatures in the Russell Crater at the beginning of spring rise above the freezing point for water. PhD student Karin Bauch is certain that “the carbon dioxide ice – and subsequently the water ice underneath – then begin to melt and there would be a possibility of liquid water on the surface for a short time.” When the water then flows down the slope and collects in gullies, erosion is the result. Moreover, the phases of erosion in both years are almost identical, which leads to the conclusion that it is seasonal effects which are responsible.

Prof. Harald Hiesinger, the Director of the Institute of Planetology at Münster University, is also impressed by the fact that there were changes to the gullies over the past years. “These observations,” he says, “are the clearest evidence so far that today water can still flow on the surface of Mars, and in a quantity that is sufficient to cause erosion.” However, only small gullies are made. “The climate on Mars today only allows very little air humidity which can settle on the surface as frost. The quantities which can melt and lead to liquid water are correspondingly small,” explains Dennis Reiss. “So it’s not enough to make large valleys such as were formed in the early years of Mars.”

Reference: Reiss D. et al. (2010): Evidence for present day gully activity on the Russell crater dune field, Mars. GEOPHYSICAL RESEARCH LETTERS, VOL. 37, doi:10.1029/2009GL042192

Dr. Christina Heimken | idw
Further information:
http://www.uni-muenster.de/
http://www.agu.org/journals/gl/gl1006/2009GL042192/2009GL042192.pdf

Further reports about: Crater Mars Planetology carbon dioxide water ice

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>