Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mountain glaciers shrinking across the West

23.10.2017

Until recently, glaciers in the United States have been measured in two ways: placing stakes in the snow, as federal scientists have done each year since 1957 at South Cascade Glacier in Washington state; or tracking glacier area using photographs from airplanes and satellites.

We now have a third, much more powerful tool. While he was a doctoral student in University of Washington's Department of Earth and Space Sciences, David Shean devised new ways to use high-resolution satellite images to track elevation changes for massive ice sheets in Antarctica and Greenland. Over the years he wondered: Why aren't we doing this for mountain glaciers in the United States, like the one visible from his department's office window?


This map shows the elevation change of Mount Rainier glaciers between 1970 and 2016. The earlier observations are from USGS maps, while the recent data use the satellite stereo imaging technique. Glacier surface elevations have dropped more than 40 meters (130 feet) in some places.

Credit: David Shean/University of Washington

He has now made that a reality. In 2012, he first asked for satellite time to turn digital eyes on glaciers in the continental U.S., and he has since collected enough data to analyze mass loss for Mount Rainier and almost all the glaciers in the lower 48 states. He will present results from these efforts Oct. 22 at the Geological Society of America's annual meeting in Seattle.

"I'm interested in the broad picture: What is the state of all of the glaciers, and how has that changed over the last 50 years? How has that changed over the last 10 years? And at this point, how are they changing every year?" said Shean, who is now a research associate with the UW's Applied Physics Laboratory.

The maps provide a twice-yearly tally of roughly 1,200 mountain glaciers in the lower 48 states, down to a resolution of about 1 foot. Most of those glaciers are in Washington state, with others clustered in the Rocky Mountains of Montana, Wyoming and Colorado, and in California's Sierra Nevada.

To create the maps, a satellite camera roughly half the size of the Hubble Space Telescope must take two images of a glacier from slightly different angles. As the satellite passes overhead, moving at about 4.6 miles per second, it takes images a few minutes apart. Each pixel of the image covers 30 to 50 centimeters (about 1 foot) and a single image can be tens of miles across.

Shean's technique uses automated software that matches millions of small features, such as rocks or crevasses, in the two images. It then uses the difference in perspective to create a 3-D model of the surface.

The first such map of a Mount St. Helens glacier was obtained in 2012, and the first for Mount Rainier in 2014. The project has grown steadily since then to include more glaciers every year.

The results confirm stake measurements at South Cascade Glacier, showing significant loss over the past 60 years. Results at Mount Rainier also reflect the broader shrinking trends, with the lower-elevation glaciers being particularly hard hit. Shean estimates cumulative ice loss of about 0.7 cubic kilometers (900 million cubic yards) at Mount Rainier since 1970. Distributed evenly across all of Mount Rainier's glaciers, that's equivalent to removing a layer of ice about 25 feet (7 to 8 meters) thick.

"There are some big changes that have happened, as anyone who's been hiking on Mount Rainier in the last 45 years can attest to," Shean said. "For the first time we're able to very precisely quantify exactly how much snow and ice has been lost."

The glacier loss at Rainier is consistent with trends for glaciers across the U.S. and worldwide. Tracking the status of so many glaciers will allow scientists to further explore patterns in the changes over time, which will help pinpoint the causes -- from changes in temperature and precipitation to slope angle and elevation.

"The next step is to integrate our observations with glacier and climate models and say: Based on what we know now, where are these systems headed?" Shean said.

Those predictions could be used to better manage water supplies and flood risks.

"We want to know what the glaciers are doing and how their mass is changing, but it's important to remember that the meltwater is going somewhere. It ends up in rivers, it ends up in reservoirs, it ends up downstream in the ocean. So there are very real applications for water resource management," Shean said. "If we know how much snow falls on Mount Rainier every winter, and when and how much ice melts every summer, that can inform water resource managers' decisions."

###

Shean will begin a faculty position this winter in the UW's Department of Civil & Environmental Engineering, where he will explore those questions further for the U.S. as well as for other regions, like high-mountain Asia, where over a billion people depend on glacier-fed rivers for irrigation, hydropower and drinking water.

Co-authors are Anthony Arendt at the UW's Applied Physics Laboratory, Erin Whorton at the Washington Water Science Center, Jon Riedel at the National Park Service and Andrew Fountain at Portland State University. The work was funded by the National Park Service, the USGS and NASA.

For more information, contact Shean at 206-221-8727 or dshean@uw.edu.

Media Contact

Hannah Hickey
hickeyh@uw.edu
206-788-7314

 @UW

http://www.washington.edu/news/ 

Hannah Hickey | EurekAlert!

More articles from Earth Sciences:

nachricht The seafloor of Fram Strait is a sink for microplastic from the Arctic and North Atlantic Ocean
30.03.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht New 3D view of methane tracks sources
25.03.2020 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Stem Cells and Nerves Interact in Tissue Regeneration and Cancer Progression

Researchers at the University of Zurich show that different stem cell populations are innervated in distinct ways. Innervation may therefore be crucial for proper tissue regeneration. They also demonstrate that cancer stem cells likewise establish contacts with nerves. Targeting tumour innervation could thus lead to new cancer therapies.

Stem cells can generate a variety of specific tissues and are increasingly used for clinical applications such as the replacement of bone or cartilage....

Im Focus: Artificial solid fog material creates pleasant laser light

An international research team led by Kiel University develops an extremely porous material made of "white graphene" for new laser light applications

With a porosity of 99.99 %, it consists practically only of air, making it one of the lightest materials in the world: Aerobornitride is the name of the...

Im Focus: Cross-technology communication in the Internet of Things significantly simplified

Researchers at Graz University of Technology have developed a framework by which wireless devices with different radio technologies will be able to communicate directly with each other.

Whether networked vehicles that warn of traffic jams in real time, household appliances that can be operated remotely, "wearables" that monitor physical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

MOC2020: Fraunhofer IOF organises international micro-optics conference in Jena

03.03.2020 | Event News

 
Latest News

Double-walled nanotubes have electro-optical advantages

30.03.2020 | Power and Electrical Engineering

Exeter researchers discover a novel chemistry to protect our crops from fungal disease

30.03.2020 | Agricultural and Forestry Science

Autophagy: Scientists discover novel role for self-recycling process in the brain

30.03.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>