Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Motion Picture’ of Past Warming Paves Way for Snapshots of Future Climate Change

20.07.2009
By accurately modeling Earth’s last major global warming — and answering pressing questions about its causes — scientists led by a University of Wisconsin-Madison climatologist are unraveling the intricacies of the kind of abrupt climate shifts that may occur in the future.

“We want to know what will happen in the future, especially if the climate will change abruptly,” says Zhengyu Liu, a UW-Madison professor of atmospheric and oceanic sciences and director of the Center for Climatic Research in the Nelson Institute for Environmental Studies. “The problem is, you don’t know if your model is right for this kind of change. The important thing is validating your model.”

To do so, Liu and his colleagues run their mode back in time and match the results of the climate simulation with the physical evidence of past climate.

Starting with the last glacial maximum about 21,000 years ago, Liu’s team simulated atmospheric and oceanic conditions through what scientists call the Bølling-Allerød warming, the Earth’s last major temperature hike, which occurred about 14,500 years ago. The simulation fell in close agreement with conditions — temperatures, sea levels and glacial coverage — collected from fossil and geologic records.

“It’s our most serious attempt to simulate this last major global warming event, and it’s a validation of the model itself, as well,” Liu says.

The results of the new climate modeling experiments are presented today (July 17) in the journal Science.

The group’s simulations were executed on “Phoenix” and “Jaguar,” a pair of Cray supercomputers at Oak Ridge National Laboratory in Oak Ridge, Tenn., and helped pin down the contributions of three environmental factors as drivers of the Bølling-Allerød warming: an increase in atmospheric carbon dioxide, the jump-start of stalled heat-moving ocean currents and a large buildup of subsurface heat in the ocean while those currents were dormant.

The climate dominoes began to fall during that period after glaciers reached their maximum coverage, blanketing most of North America, Liu explains. As glaciers melted, massive quantities of water poured into the North Atlantic, lowering the ocean salinity that helps power a major convection current that acts like a conveyor belt to carry warm tropical surface water north and cooler, heavier subsurface water south.

As a result, according to the model, ocean circulation stopped. Without warm tropical water streaming north, the North Atlantic cooled and heat backed up in southern waters. Subsequently, glacial melt slowed or stopped as well, and eventually restarted the overturning current — which had a much larger reserve of heat to haul north.

“All that stored heat is released like a volcano, and poured out over decades,” Liu explains. “That warmed up Greenland and melted (arctic) sea ice.”

The model showed a 15-degree Celsius increase in average temperatures in Greenland and a 5-meter increase in sea level over just a few centuries, findings that squared neatly with the climate of the period as represented in the physical record.

“Being able to successfully simulate thousands of years of past climate for the first time with a comprehensive climate model is a major scientific achievement,” notes Bette Otto-Bliesner, an atmospheric scientist and climate modeler at National Center for Atmospheric Research (NCAR) and co-author of the Science report. “This is an important step toward better understanding how the world’s climate could change abruptly over the coming centuries with increasing melting of the ice caps.”

The rate of ice melt during the Bølling-Allerød warming is still at issue, but its consequences are not, Liu says. The modelers simulated both a slow decrease in melt and a sudden end to melt run-off. In both cases, the result was a 15-degree warming.

“That happened in the past,” Liu says. “The question is, in the future, if you have a global warming and Greenland melts, will it happen again?”

Time — both actual and computing — will tell. In 2008, the group simulated about one-third of the last 21,000 years. With another 4 million processor hours to go, the simulations being conducted by the Wisconsin group will eventually run up to the present and 200 years into the future.

Traditional climate modeling approaches were limited by computer time and capabilities, Lieu explains.

“They did slides, like snapshots,” Liu says. “You simulate 100 years, and then you run another 100 years, but those centuries may be 2,000 years apart (in the model). To look at abrupt change, there is no shortcut.”

Using the interactions between land, water, atmosphere and ice in the Community Climate System Model developed at NCAR, the researchers have been able to create a much more detailed and closely spaced book of snapshots, “giving us more of a motion picture of the climate” over millennia, Liu said.

He stressed the importance of drawing together specialists in computing, oceanography, atmospheric science and glaciers — including John Kutzbach, a UW-Madison climate modeler, and UW-Madison doctoral student Feng He, responsible for modeling the glacial melt. All were key to attaining the detail necessary in recreating historical climate conditions, Liu says.

“All this data, it’s from chemical proxies and bugs in the sediment,” Liu said. “You really need a very interdisciplinary team: people on deep ocean, people on geology, people who know those bugs. It is a huge — and very successful — collaboration.”

The new study was funded by the U.S. National Science Foundation, with additional support from the U.S. Department of Energy.

Chris Barncard | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Earth Sciences:

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>