Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Most of Earth's Carbon May Be Hidden in the Planet's Inner Core, New Model Suggests

03.12.2014

As much as two-thirds of Earth's carbon may be hidden in the inner core, making it the planet's largest carbon reservoir, according to a new model that even its backers acknowledge is "provocative and speculative."

In a paper scheduled for online publication in the Proceedings of the National Academy of Sciences this week, University of Michigan researchers and their colleagues suggest that iron carbide, Fe7C3, provides a good match for the density and sound velocities of Earth's inner core under the relevant conditions.

The model, if correct, could help resolve observations that have troubled researchers for decades, according to authors of the PNAS paper.

The first author is Bin Chen, who did much of the work at the University of Michigan before taking a faculty position at the University of Hawaii at Manoa. The principal investigator of the project, Jie Li, is an associate professor in U-M's Department of Earth and Environmental Sciences.

"The model of a carbide inner core is compatible with existing cosmochemical, geochemical and petrological constraints, but this provocative and speculative hypothesis still requires further testing," Li said. "Should it hold up to various tests, the model would imply that as much as two-thirds of the planet's carbon is hidden in its center sphere, making it the largest reservoir of carbon on Earth."

It is now widely accepted that Earth's inner core consists of crystalline iron alloyed with a small amount of nickel and some lighter elements. However, seismic waves called S waves travel through the inner core at about half the speed expected for most iron-rich alloys under relevant pressures.

Some researchers have attributed the S-wave velocities to the presence of liquid, calling into question the solidity of the inner core. In recent years, the presence of various light elements—including sulfur, carbon, silicon, oxygen and hydrogen—has been proposed to account for the density deficit of Earth's core.

Iron carbide has recently emerged as a leading candidate component of the inner core. In the PNAS paper, the researchers conclude that the presence of iron carbide could explain the anomalously slow S waves, thus eliminating the need to invoke partial melting.

"This model challenges the conventional view that the Earth is highly depleted in carbon, and therefore bears on our understanding of Earth's accretion and early differentiation," the PNAS authors wrote.

In their study, the researchers used a variety of experimental techniques to obtain sound velocities for iron carbide up to core pressures. In addition, they detected the anomalous effect of spin transition of iron on sound velocities.

They used diamond-anvil cell techniques in combination with a suite of advanced synchrotron methods including nuclear resonant inelastic X-ray scattering, synchrotron Mössbauser spectroscopy and X-ray emission spectroscopy.

Other U-M authors of the PNAS paper are Zeyu Li and Jiachao Liu of the Department of Earth and Environmental Sciences. The study was supported by the National Science Foundation and the U.S. Department of Energy. It also benefited from a Crosby Award from the U-M ADVANCE program and U-M's Associate Professor Support Fund.

Contact Information
Jim Erickson, 734-647-1842, ericksn@umich.edu

Jim Erickson | newswise
Further information:
http://www.umich.edu

More articles from Earth Sciences:

nachricht "Airlift" facility: TU Freiberg tests new mining technology in research and training mine
22.10.2019 | Technische Universität Bergakademie Freiberg

nachricht Atmospheric pressure impacts greenhouse gas emissions from leaky oil and gas wells
21.10.2019 | University of British Columbia

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

New deep-water coral discovered

22.10.2019 | Life Sciences

DNA-reeling bacteria yield new insight on how superbugs acquire drug-resistance

22.10.2019 | Life Sciences

Heat Pumps with Climate-Friendly Refrigerant Developed for Indoor Installation

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>