Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring volcanoes with ground-based atomic clocks

30.06.2015

An international team led by scientists from the University of Zurich finds that high-precision atomic clocks can be used to monitor volcanoes and potentially improve predictions of future eruptions. In addition, a ground-based network of atomic clocks could monitor the reaction of the Earth’s crust to solid Earth tides.

Atomic clocks measure time with unbelievable accuracy. The best atomic clocks are so precise that they would lose less than one second over a period of 10 billion years. However, they are generally only used in laboratories.


The video shows, how atomic clocks can be used to monitor volcanoes. (Source: UZH)

Science and industry have yet to take full advantage of their unprecedented ability to measure time. An international team including Dr. Ruxandra Bondarescu, Andreas Schärer and Prof. Philippe Jetzer from the Institute of Physics from the University of Zurich discusses potential applications for atomic clocks.

Their analysis shows that the slow down of time predicted by general relativity can be measured by local clocks and used to monitor volcanoes. General relativity states that clocks positioned at different distances from a massive body like the Earth have different tick rates. The closer a clock is to a massive object, the slower it ticks.

In a similar manner, subterranean objects influence the tick rate of local clocks that are located above the Earth’s surface. New lava filling a magma chamber beneath a volcano makes a clock located above that volcano tick more slowly than a clock that is located further away. Volcanoes are currently monitored using GPS receivers.

The resulting data often has to be integrated over a period of several years before an estimate of the volume of new magma can be made. A network of local, highly precise atomic clocks may provide the same information within a few hours. This would make it possible to monitor processes inside volcanoes more closely and to make better predictions for future volcanic eruptions.

Monitoring the solid Earth tides with a global network of atomic clocks

Atomic clocks can also be used to monitor the solid Earth tides. Tides occur because the Earth moves in the gravitational field of the Sun and the Moon. It reacts to this outer field by deforming, which in turn leads to ocean tides and to the ground on the continents lifting and falling regularly. The ground can rise as much as 50 cm. A global network of atomic clocks that are connected via fiber optic cables used for internet, could provide continuous measurements of the Earth tides and check existing theoretical models. It would also be possible to examine any local differences in the response of the Earth’s crust to the Earth tides.

The researchers hope that high precision clocks could be deployed in volcanic areas in the next few years. This is, however, subject to sufficient interest and investment from industry. “We need this additional tool to monitor magma movement under volcanoes such as the Yellowstone supervolcano, which is overdue for an explosion that would alter life on Earth as we known it”, explains Bondarescu.

Literature:
Ruxandra Bondarescu, Andreas Schärer, Andrew P. Lundgren, György Hetényi, Nicolas Houlié, Philippe Jetzer, and Mihai Bondarescu. Atomic Clocks as a Tool to Monitor Vertical Surface Motion. Express letter in the Geophysical Journal International, in Press. arXiv:1506.02457.

Contacts:
Dr. Ruxandra Bondarescu
Physik-Institut
University of Zurich
Tel.: +41 44 635 58 04
Email: ruxandra@physik.uzh.ch

Prof. Philippe Jetzer
Physik-Institut
University of Zurich
Tel.: +41 44 635 58 19
Email: jetzer@physik.uzh.ch

http://www.mediadesk.uzh.ch/index.html

Beat Müller | Universität Zürich
Further information:
http://www.uzh.ch/
http://www.mediadesk.uzh.ch/articles/2015/vulkane-mit-atomuhren-ueberwachen_en.html

More articles from Earth Sciences:

nachricht Massive impact crater from a kilometer-wide iron meteorite discovered in Greenland
15.11.2018 | Faculty of Science - University of Copenhagen

nachricht The unintended consequences of dams and reservoirs
14.11.2018 | Uppsala University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>