Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New monitoring stations detect 'silent earthquakes' in Costa Rica

17.02.2009
After installing an extensive network of monitoring stations in Costa Rica, researchers have detected slow slip events (also known as "silent earthquakes") along a major fault zone beneath the Nicoya Peninsula.

These findings are helping scientists understand the full spectrum of motions occurring on the fault and may yield new insights into the events that lead to major earthquakes.

A slow slip event involves the same fault motion as an earthquake, but it happens so slowly that the ground does not shake. It can be detected only with networks of modern instruments that use the Global Positioning System (GPS) to measure precisely the movements of the Earth's crust over time.

Susan Schwartz, a professor of Earth and planetary sciences at the University of California, Santa Cruz, leads a team that has installed a permanent network of 13 GPS monitoring stations and 13 seismic stations on Costa Rica's Nicoya Peninsula.

"At least two slow slip events have occurred beneath the Nicoya Peninsula since 2003," Schwartz said. "When we recorded the first one in 2003, we had only 3 GPS stations. By 2007, we had 12 GPS stations and over 10 seismic stations, so the event that year was very nicely recorded."

The National Science Foundation (NSF) has funded the work by Schwartz and others to install monitoring equipment in Costa Rica. Schwartz, who directs UCSC's Keck Seismological Laboratory, has been working in the region since 1991. At the annual meeting of the American Association for the Advancement of Science (AAAS) in Chicago, she will describe results from the past decade of fault-zone monitoring in Central America.

"The newest discovery is the occurrence of these slow slip events. But there has been a decade of focused effort in this area that has significantly advanced our knowledge of the Central America seismogenic system," Schwartz said. "Initially, we focused on areas of the fault that are locked up, which slip in an earthquake. The slow slip is occurring in regions that are not strongly locked, and a big question is whether that is loading the locked area, making it more likely to break, or relieving stress on the fault."

Schwartz said she does not think slow slip events significantly increase the likelihood of a major earthquake on a locked portion of the fault. She noted, however, that scientists are still at an early stage in terms of understanding the implications of different kinds of fault motion and translating that information into earthquake hazard assessments.

Flanked by active tectonic margins on both the Pacific and Caribbean coasts, Costa Rica is one of the most earthquake-prone and volcanically active countries in the world. Just off the west coast is the Middle America Trench, where a section of the seafloor called the Cocos Plate dives beneath Central America, generating powerful earthquakes and feeding a string of active volcanoes. This type of boundary between two converging plates of the Earth's crust is called a subduction zone--and such zones are notorious for generating the most powerful and destructive earthquakes.

The slow slip phenomenon was first observed at subduction zones where hundreds of GPS and seismic instruments are deployed: the Cascadia fault zone (off the coast of Washington and British Columbia) and Japan's Nankai Trough. At these and most other subduction zones, the part of the plate boundary where earthquakes originate, called the seismogenic zone, lies beneath the ocean. But in Costa Rica, the seismogenic zone runs right beneath the Nicoya Peninsula.

"It's a perfect opportunity to study the seismogenic zone using a network of land-based instruments," Schwartz said.

The 2007 slow slip event in Costa Rica involved movement along the fault equivalent to a magnitude 6.9 earthquake. But it took place over a period of 30 days rather than the 10 seconds typical for an earthquake of that size, and such slow motion does not radiate the seismic energy associated with normal earthquakes. The instruments did pick up seismic tremor, however, which Schwartz likened to a lot of very small earthquakes. Tremor activity is also associated with slow slip events in Japan and Cascadia, but there are some differences in Costa Rica, Schwartz said.

"Costa Rica has a different type of subduction zone from the well-studied ones in Japan and Cascadia," she said. "One thing that makes it interesting is that the temperature is much cooler at the depth range where slip occurs, and that is helping us work out the role of fluids in generating slow slip."

Ultimately, the goal of this research is not only a better understanding of subduction zones, but also better assessments of earthquake hazards. Schwartz said her Costa Rican colleagues have been working to educate the population of Nicoya about earthquakes and related hazards. With a growing population along the coast, the region faces a potential tsunami threat as well as the possibility of a major earthquake, she said.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>