Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Monitoring lava lake levels in Congo volcano

16.05.2018

Nyiragongo in the Democratic Republic of the Congo is among the world's most active volcanoes, with a persistent lava lake as one of its defining features.

In a talk at the 2018 SSA Annual Meeting, Adrien Oth of the European Center for Geodynamics and Seismology discussed how he and his colleagues are using multiple methods to monitor lava lake levels at the volcano.


Nyiragongo crater lava lake, Democratic Republic of Congo.

Credit: Julien Barriere

The researchers analyze seismic and infrasound signals generated by the volcano as well as data collected during satellite flyovers to measure Nyiragongo's lake level fluctuations.

During the eruption in 2002, which caused a major humanitarian crisis, the lava lake was drained and the depth of the remaining crater was estimated between 600 and 800 meters. About four months after the eruption, the crater started filling up again.

Nowadays, the inner crater floor is about 400 meters below the rim and the lava lake remains at high level.

"The lava lake level is, among other things, related to the variations of the pressure inside the magmatic system underneath Nyiragongo volcano," Oth and his colleagues explained." In that sense, the lava lake represents a window into the magmatic system, and its level fluctuations provide information on the recharge and drainage of the magmatic system, such as batches of fresh magma and/or gas, or lateral magmatic intrusions into the surrounding crust."

The different techniques used to observe the lava lake offer a more complete look at the volcano's activity, the authors said. The seismic and infrasound data, collected continuously, help researchers gauge pressure changes in magmatic activity. "Until very recently, very few high-quality data were available for this region," the researchers noted."

Over the past few years, our consortium assisted the Goma Volcano Observatory to deploy one of the densest modern real-time telemetered monitoring systems in Africa. Combined with modern processing techniques, these newly acquired datasets provide unprecedented opportunities to investigate the behavior of this unique magmatic system."

In combination with seismic and infrasound data, the scientists are using high resolution synthetic-aperture radar (SAR) images captured by satellites passing over the volcano to directly measure the rise and fall of the lava lake level.

These images measure the length of the shadow cast by the crater's edge on the lava lake surface, which can be used to calculate the lava depth.

The lava lake observations are only one piece of the puzzle within the regional volcanic system, and "will certainly be of key importance for successful eruption forecasting in the future," said Oth and colleagues. "At this stage, however, these observations need to be first put into the larger context of the magmatic system in order to allow their proper interpretation in terms of eruptive processes."

###

The 2018 Annual Meeting, held May 14-17 in Miami, Florida, is a joint conference between the Seismological Society of America and the Latin American and Caribbean Seismological Commission (LACSC).

Becky Ham | EurekAlert!

More articles from Earth Sciences:

nachricht Geochemists measure new composition of Earth’s mantle
17.09.2019 | Westfälische Wilhelms-Universität Münster

nachricht Low sea-ice cover in the Arctic
13.09.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

 
Latest News

DGIST achieves the highest efficiency of flexible CZTSSe thin-film solar cell

19.09.2019 | Power and Electrical Engineering

NTU Singapore scientists develop technique to observe radiation damage over femtoseconds

19.09.2019 | Physics and Astronomy

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

VideoLinks
Science & Research
Overview of more VideoLinks >>>