Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mixing it up: Study provides new insight into Southern Ocean behaviour

21.07.2014

A new study has found that turbulent mixing in the deep waters of the Southern Ocean, which has a profound effect on global ocean circulation and climate, varies with the strength of surface eddies – the ocean equivalent of storms in the atmosphere – and possibly also wind speeds.

It is the first study to link eddies at the surface to deep mixing on timescales of months to decades.


This image shows sensors from the DIMES project being used in the Drake Passage.

Credit: Katy Sheen

This new insight into how the Southern Ocean behaves will allow scientists to build computer models that can better predict how our climate is going to change in the future.

The findings are published in the latest issue of Nature Geoscience.

The Southern Ocean plays a pivotal role in the global overturning circulation, a system of surface and deep currents linking all oceans and one of the fundamental determinants of the planet's climate. The Southern Ocean around Antarctica is the only location where the ocean can circulate freely all the way around the globe without continental barriers.

Because the ocean is made up of many layers of water that are dependent on temperature and salinity, water moves easily along horizontal or 'isopycnal' layers, but mixes only slowly across the layers, known as 'diapycnal' mixing. This combination of diapycnal and isopycnal mixing drives the upwelling of deep waters up to the surface, forming an 'upper' and 'lower' overturning cell. When deep waters rise to the surface, they bring with them the nutrients that plankton need to grow. Conversely, as surface waters sink they take heat and dissolved CO2 from the atmosphere, strongly shaping regional and global climate change.

The researchers took measurements of small-scale temperature and velocity fluctuations, to measure the diapycnal movements in the Antarctic Circumpolar Current (ACC) across the Drake Passage region of the Southern Ocean.

The data revealed that, during the period of their measurements, turbulence in deep waters significantly correlated with surface eddy activity. The mechanism that causes eddies in the surface ocean leads to an intensification of currents in the top and bottom layers of the ocean. When such instability arises, strengthened bottom currents interact with rough bottom topography to generate internal waves that eventually devolve into turbulence. This process provides a source of energy for the mixing of abyssal waters, which, in turn, hastens the global overturning circulation.

The researchers established that deep water eddies are likely energised by strong westerly winds over the Southern Ocean that force the ACC and that abyssal mixing, on time scales of months to decades, reacts to this changing atmospheric climate.

Study co-author Katy Sheen, a Postdoctoral Research Fellow from Ocean and Earth Science at the University of Southampton, says: "These findings will help us to understand the processes that drive the ocean circulation and mixing so that we can better predict how our Earth system will respond to the increased levels of carbon dioxide that we have released into the atmosphere."

The researchers used data from the 'Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean' (DIMES) project, a UK/US field program aimed at measuring diapycnal and isopycnal mixing in the Southern Ocean. DIMES released a chemical dye tracer into the ACC about a mile below the sea surface. Over five years, the horizontal and vertical spread of the tracer was mapped out by measuring its concentration in hundreds of seawater samples, to identify how quickly the Southern Ocean moved water particles around. It also used a mooring cluster of sensors in the Drake Passage to provide detailed time series information on the processes responsible for the mixing of the tracer.

Glenn Harris | Eurek Alert!
Further information:
http://www.soton.ac.uk

Further reports about: DIMES sensors Earth Ocean activity atmosphere behaviour layers measurements mixing processes temperature topography

More articles from Earth Sciences:

nachricht Live from the ocean research vessel Atlantis
13.12.2018 | National Science Foundation

nachricht NSF-supported scientists present new research results on Earth's critical zone
13.12.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>