Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mission to Mars moon could be a sample-return twofer, study suggests

12.11.2013
The study helps to confirm the idea that the surface of Phobos contains tons of dust, soil, and rock blown off the Martian surface by large projectile impacts.

Phobos' orbital path plows through occasional plumes of Martian debris, meaning the tiny moon has been gathering Martian castoffs for millions of years. That means a sample-return mission planned by the Russian space agency could sample two celestial bodies for the price of one.


The Martian moon Phobos has accumulated dust and debris from the surface of Mars, knocked into its orbital path by projectiles colliding with the planet. A sample-return mission to Phobos would thus return material both from Phobos and from Mars.

Credit: NASA

"The mission is scheduled to be flown early in the next decade, so the question is not academic," said James Head, professor of geological sciences and an author on the study. "This work shows that samples from Mars can indeed be found in the soil of Phobos, and how their concentration might change with depth. That will be critical in the design of the drills other equipment."

The research appears in the latest issue of Space and Planetary Science.

The Russian mission will be the space agency's second attempt to return a sample from Phobos. Head was a participating scientist on the first try, which launched in 2011, but an engine failure felled the spacecraft before it could leave Earth orbit. The next attempt is scheduled to launch in 2020 or shortly thereafter.

This new research grew out of preparation for the original mission, which would still be en route to Phobos had it not encountered problems. Scientists had long assumed Phobos likely contained Martian bits, but Russian mission planners wanted to know just how much might be there and where it might be found. They turned to Head and Ken Ramsley, a visiting researcher in Brown's planetary geosciences group.

To answer those questions, Ramsley and Head started with a model based on our own Moon to estimate how much of Phobos' regolith (loose rock and dust on the surface) would come from projectiles. They then used gravitational and orbital data to determine what proportion of that projectile material came from Mars.

"When an impactor hits Mars, only a certain of proportion of ejecta will have enough velocity to reach the altitude of Phobos, and Phobos' orbital path intersects only a certain proportion of that," Ramsley said. "So we can crunch those numbers and find out what proportion of material on the surface of Phobos comes from Mars."

According to those calculations, the regolith on Phobos should contain Martian material at a rate of about 250 parts per million. The Martian bits should be distributed fairly evenly across the surface, mostly in the upper layers of regolith, the researchers showed.

"Only recently — in the last several 100 million years or so — has Phobos orbited so close to Mars," Ramsley said. "In the distant past it orbited much higher up. So that's why you're going to see probably 10 to 100 times higher concentration in the upper regolith as opposed to deeper down."

And while 250 parts per million doesn't sound like a lot, the possibility of returning even a little Martian material to Earth gets planetary scientists excited. It's a nice bonus for a mission primarily aimed at learning more about Phobos, a mysterious little rock in its own right.

Scientists are still not sure where it came from. Is it a chunk of Mars that was knocked off by an impact early in Martian history, or is it an asteroid snared in Mars's orbit? There are also questions about whether its interior might hold significant amounts of water.

"Phobos has really low density," Head said. "Is that low density due to ice in its interior or is it due to Phobos being completely fragmented, like a loose rubble pile? We don't know."

If all goes well, the upcoming Russian mission will help solve some of those mysteries about Phobos. And we might learn a good deal about Mars in the process.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Kevin Stacey | EurekAlert!
Further information:
http://www.brown.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>