Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mid- and high-latitude northern hemisphere continues to absorb atmospheric carbon dioxide

19.06.2017

The land vegetation and the oceans in Northern extratropical latitudes absorb from the atmosphere about a quarter of the CO₂ which is emitted from anthropogenic sources. International carbon cycle experts met at the Max Planck Institute for Biogeochemistry in Jena to discuss the scientific background of this process, its stability, new developments and future trends during a 3-day symposium in honor of Prof. Martin Heimann’s retirement as Max Planck director.

Only about 45% of the anthropogenic CO₂ emissions from the burning of coal, oil and gas and from deforestation accumulate in the atmosphere, while the remaining 55% are taken up by land and ocean in about similar proportions. This global partitioning has been remarkably stable over the last 60 years of accurate observations.


Prof. Martin Heimann

Photo: Martin Jehnichen

Since about 30 years ago, increasing evidence has shown that a significant fraction of the CO₂-absorbing ecosystems, so-called sinks, are located in the northern extra-tropics. These are primarily the mid-latitude vegetation, boreal forests and the north Pacific and Atlantic oceans.

The characteristics and the remarkable stability of this “northern hemisphere CO₂-sink” has now been discussed in a symposium with 120 climate scientists, among them renowned experts from 4 continents, at the Max Planck Institute for Biogeochemistry in Jena, Germany.

The sink function of the Northern hemisphere relies on both the vegetation of the land surface and the oceans.

Vegetation incorporates CO₂ through photosynthesis and this uptake increases with higher CO₂ concentrations, an effect known as CO₂ fertilization. However, this process is also modified by the availability of water and nutrients. Furthermore, changes in land management, in particular regrowing forests in northern mid-latitudes also contribute to CO₂ uptake by land vegetation.

Conversely, rising temperatures enhance soil respiration which reduces the net CO₂ absorption. In addition, high-latitude warming fostering permafrost thawing will particularly enhance emissions of CO₂ and methane, both powerful greenhouse gases. While the latter high-latitude fluxes are currently still very small, they are expected to accelerate with increased warming in the Arctic, thus constituting an important positive climate feedback.

While many of these complex land processes are still poorly known, powerful research tools have been developed over the last decades providing a much clearer understanding of individual causal links. Among these are high resolution analyses from satellite observations, global inventories using radiocarbon as well as substantial improvements in terrestrial biosphere models including comprehensive descriptions of nutrient and water cycles.

The ocean sink for CO₂ has also substantially increased in the last few decades as documented by an impressive array of new observation platforms, including automated measurements on ferries and freighter ships, autonomous floating devices and depth profile moorings. These new methodological advances provide a much richer knowledge of ocean carbon cycling than heretofore possible. Of particular interest is the tantalizing finding that the ocean sink, while increasing, also exhibits much stronger decadal variability than previously thought.

Given the enhanced view of the complex carbon cycle processes on land and in the ocean, it is remarkable that overall the global CO₂ sink has remained rather stable so far, at least on a decadal scale. On shorter time scales, however, interannual variability driven by climate fluctuations, such as El Niño events, is clearly visible in the observations. It is still an open question whether these short term variations can be taken as an analogue for understanding and quantifying the response of the global carbon cycle to the longer-term global warming expected during this century.

A tribute to Prof. Martin Heimann as an outstanding climate researcher

The scientific symposium on the Northern hemisphere sink was dedicated to Prof. M. Heimann, who retired as Max-Planck director at MPI-BGC, to honor his seminal role in the research field. As a physicist specializing in atmospheric greenhouse gases, he pioneered comprehensive global climate models, established networks of defined atmospheric measurement stations, substantially improved high-precision and isotopic measurement procedures, and co-initiated the European ICOS network. Prof. Heimann’s influential role was honored in the symposium lectures of the international experts, many of whom he mentored during his fruitful career.

Following his PhD at University of Bern, Switzerland, Prof. Heimann worked as research assistant with Charles D. Keeling at the Scripps Institution of Oceanography, UCSD, La Jolla, U.S.A. He pro-ceeded to become a group leader first at the Max Planck Institute for Meteorology, Hamburg, and later at the Max Planck Institute for Biogeochemistry in Jena, where he was promoted to Max Planck Director of the Department Biogeochemical Systems in 2003. M. Heimann was elected a member of the Academia Europaea and Academician of the International Eurasian Academy of Sciences, received the medal of A.M. Obukhov Institute of Atmospheric Physics at the Russian Academy of Sciences, accepted an honorary professorship at Friedrich-Schiller University Jena, was awarded the Heinrich-Greinacher-Preis and contributed to the Nobel Peace Prize for IPCC in 2007. M. Heimann is now looking forward to continuing his successful research as Emeritus Director at MPI-BGC and visiting professor at University of Helsinki, Finland.

Dr. Eberhard Fritz | Max-Planck-Institut für Biogeochemie
Further information:
http://www.bgc-jena.mpg.de

More articles from Earth Sciences:

nachricht Seismic study reveals huge amount of water dragged into Earth's interior
18.12.2018 | National Science Foundation

nachricht A damming trend
17.12.2018 | Michigan State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>