Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mesoscale ocean eddies impact weather

08.07.2013
Ocean currents have a big impact on weather and climate. Without the Gulf Stream, the climate of Northern and Western Europe would be cooler. Scientists at ETH Zurich now uncovered that also relatively small swirling motions in the ocean, so called eddies, impact weather. A large number of such eddies exists in all oceans at any time, featuring diameters of about one hundred kilometers.

Eddies arise because ocean currents are generally turbulent, affected for instance by the topography of the ocean bottom, explains Ivy Frenger, a postdoc in the group of ETH-professor Nicolas Gruber at the Institute of Biogeochemistry and Pollutant Dynamics.

"An analogy to this topographic effect are the swirls that occur downstream of a rock in a creek", says Frenger. In the ocean, eddies can be carried along by large-scale currents over vast distances, and also move around independently.

Precise satellite measurements

The ETH scientists analysed comprehensive satellite data to determine the impact of these eddies on the overlying atmosphere. Their focus is the Southern hemisphere where such eddies are especially frequent. They detected the eddies based on precise measurements of sea surface topography. "Eddies appear as bumps or dips on the sea surface as the density of water within the eddies differs from that of the surrounding ambient water", explains Frenger.

The scientists investigated data collected over nearly a decade allowing them to extract information for more than 600'000 transient eddies. They compiled these eddy-data, and compared them to the corresponding overlying wind, cloud and precipitation data which had been retrieved by means of satellites as well. The scientists found that so-called anticyclonic (meaning they rotate counter clockwise in the southern hemisphere) eddies cause on average a local increase of near-surface wind speed, cloud cover and rain probability. In contrast, the clockwise rotating (so-called cyclonic) eddies reduce near-surface wind speed, clouds and rainfall.

Increased variability

Surface water in anticyclonic eddies is warmer than in their surroundings, for cyclonic eddies it is the opposite. These temperature differences mainly reflect the origin of the eddies, meaning they originate from either warmer or cooler waters relative to their current position. Frenger and colleagues computed that wind speed increases by roughly 5 percent, cloud cover by 3 percent and rain probability by 8 percent for each degree Celsius that an eddy is warmer than its ambient water.

According to Frenger, the number of warm and cold eddies is similar in most of the ocean, so that their opposite signals in the atmosphere tend to neutralize themselves, likely leading to only a small change on average. However, the oceanic eddies increase atmospheric variability and hence may influence extreme events. If a storm blows over such an eddy, peaks in the wind speed may be diminished or amplified depending on the sense of rotation of the underlying eddy. Possibly, eddies may also influence the intensity or course of such a storm. "It is important to know the variability caused by ocean eddies and account for it in weather and climate models", concludes Frenger. In addition, in areas where either warm or cold eddies dominate, they may also have larger-scale effects.

Indications for the mechanism

This study is the first examining such eddies systematically with regard to their impacts not only on wind and clouds but also on rainfall. Further, the ETH scientists inferred the mechanism of this phenomenon based on the spatial pattern of the local changes of the weather above the eddies. Two main hypotheses have been discussed in the literature: the first argues that the anomalous sea surface temperatures of the eddies cause a change in the overlying temperature of the atmosphere, which in turn results in changes in surface pressure. This leads to a compensating air flow, more specifically wind. If this hypothesis was true, one would expect wind speed changes at the edge of eddies.

However, the data evaluated by the ETH scientists reveal that the wind speed changes not at the edge of eddies, but rather at the centre. This points to another mechanism to be dominant, one where the anomalous ocean surface temperature modifies primarily the level of turbulence in the overlying atmosphere: the warmer the eddy, the greater the disturbance in the atmosphere above and the greater the altitude to which the eddy affects the lower atmosphere, which subsequently may change wind, clouds and rain.

In this project, the scientists so far only examined the impact of ocean eddies on weather, neglecting the possibility that the resulting changes in the atmosphere influence the ocean, leading to a fully coupled atmosphere ocean system at scales of 100 kilometres and less. In an on-going study, the researchers are investigating this effect with computer simulations.

Literature reference

Frenger I, Gruber N, Knutti R, Münnich M: Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 2013, Advance Online Publication, doi: 10.38/ngeo1863

Nicolas Gruber | EurekAlert!
Further information:
http://www.env.ethz.ch

More articles from Earth Sciences:

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

nachricht Planet at risk of heading towards irreversible “Hothouse Earth” state
07.08.2018 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Can radar replace stethoscopes?

14.08.2018 | Medical Engineering

The end-Cretaceous extinction unleashed modern shark diversity

14.08.2018 | Life Sciences

Light-controlled molecules: Scientists develop new recycling strategy

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>