Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mercury contracted more than prior estimates, evidence shows

17.03.2014

New evidence gathered by NASA's MESSENGER spacecraft at Mercury indicates the planet closest to the sun has shrunk up to 7 kilometers in radius over the past 4 billion years, much more than earlier estimates.

The new finding, published in the journal Nature Geoscience Sunday, March 16, solves an apparent enigma about Mercury's evolution.

Older images of surface features indicated that, despite cooling over its lifetime, the rocky planet had barely shrunk at all. But modeling of the planet's formation and aging could not explain that finding.

Now, Paul K. Byrne and Christian Klimczak at the Carnegie Institution of Washington have led a team that used MESSENGER's detailed images and topographic data to build a comprehensive map of tectonic features. That map suggests Mercury shrunk substantially as it cooled, as rock and metal that comprise its interior are expected to.

"With MESSENGER, we have now obtained images of the entire planet at high resolution and, crucially, at different angles to the sun that show features Mariner 10 could not in the 1970s," said Steven A. Hauck, II, a professor of planetary sciences at Case Western Reserve University and the paper's co-author.

Mariner 10, the first spacecraft sent to explore Mercury, gathered images and data over just 45% of the surface during three flybys in 1974 and 1975. MESSENGER, which launched in 2004 and was inserted into orbit in 2011, continues collecting scientific data, completing its 2,900th orbit of Mercury later this month.

Mercury's surface differs from Earth's in that its outer shell, called the lithosphere, is made up of one tectonic plate instead of multiple plates.

To help gauge how the planet may have shrunk, the researchers looked at tectonic features, called lobate scarps and wrinkle ridges, which result from interior cooling and surface compression. The features resemble long ribbons from above, ranging from 5 to more than 550 miles long.

Lobate scarps are cliffs caused by thrust faults that have broken the surface and reach up to nearly 2 miles high. Wrinkle ridges are caused by faults that don't extend as deep and tend to have lower relief. Surface materials from one side of the fault ramp up and fold over, forming a ridge. The scientists mapped a total of 5,934 of the tectonic features.

The scarps and ridges have much the same effect as a tailor making a series of tucks to take in the waist of a pair of pants.

With the new data, the researchers were able to see a greater number of these faults and estimate the shortening across broad sections of the surface and thus estimate the decrease in the planet's radius.

They estimate the planet has contracted between 4.6 and 7 kilometers in radius.

"This is significantly greater than the 1 to maybe 2 kilometers reported earlier on the basis of Mariner 10 data," Hauck said.

And, importantly, he said, models built on the main heat-producing elements in planetary interiors, as detected by MESSENGER, support contraction in the range now documented.

One striking aspect of the form and distribution of surface tectonic features on Mercury is that they are largely consistent with some early explanations about the features of Earth's surface, before the theory of plate tectonics made them obsolete—at least for Earth, Hauck said.

So far, Earth is the only planet known to have tectonic plates instead of a single, outer shell.

The findings, therefore, can provide limits and a framework to understand how planets cool—their thermal, tectonic and volcanic history. So, by looking at Mercury, scientists learn not just about planets in our solar system, but about the increasing number of rocky planets being found around other stars.

Kevin Mayhood | EurekAlert!
Further information:
http://www.case.edu

Further reports about: Mercury Mercury's Evolution Reserve built estimates evidence findings images materials pair topographic data

More articles from Earth Sciences:

nachricht Research icebreaker Polarstern begins the Antarctic season
09.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Far fewer lakes below the East Antarctic Ice Sheet than previously believed
08.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>