Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Melting Greenland Ice Sheets May Threaten Northeast United States, Canada

28.05.2009
A melting of the Greenland Ice Sheet this century may drive more water than previously thought toward the already threatened coastlines of New York, Boston, Halifax, and other cities in the northeastern United States and Canada, new research shows.

The study finds that if Greenland ice melts at moderate to high rates, ocean circulation by 2100 may shift and cause sea levels off the northeast coast of North America to rise by about 30 to 50 centimeters (12 to 20 inches) more than other coastal areas. The research builds on recent reports that have found that sea level rise associated with global warming could adversely affect North America, and its findings suggest that the situation is even more urgent than previously believed.

"If the Greenland melt continues to accelerate, we could see significant impacts this century on the northeast U.S. coast from the resulting sea level rise," says Aixue Hu, a scientist with the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, and lead author of the paper. "Major northeastern cities are directly in the path of the greatest rise."

Hu's paper will be published on 29 May in Geophysical Research Letters, a journal of the American Geophysical Union (AGU). A previous study in Nature Geoscience in March warned that warmer water temperatures could shift ocean currents in a way that would raise sea levels off the Northeast by about 20 cm (8 in) more than the average global sea level rise. But it did not include the additional impact of Greenland ice, which at moderate to high melt rates would further accelerate changes in ocean circulation and drive an additional 10 to 30 cm (4 to 12 in) of water rise toward heavily populated areas in northeastern North America on top of average global sea level rise. More remote areas in extreme northeastern Canada and Greenland could see even higher sea level rise.

Scientists have been cautious about estimating average sea level rise this century in part because of complex processes within ice sheets. The 2007 assessment of the Intergovernmental Panel on Climate Change projected that sea levels worldwide could rise by an average of 18 to 58 cm (7 to 23 inches) this century, but many researchers believe the rise will be greater because of dynamic factors in ice sheets that appear to have accelerated the melting rate in recent years.

To assess the impact of Greenland ice melt on ocean circulation, Hu and his coauthors used the Community Climate System Model, an NCAR-based computer model that simulates global climate. They considered three scenarios: the melt rate continuing to increase by 7 percent per year, as has been the case in recent years, or the melt rate slowing down to an increase of either 1 or 3 percent per year.

If Greenland's melt rate slows down to a 3 percent annual increase, the study team's computer simulations indicate that the runoff from its ice sheet could alter ocean circulation in a way that would direct about 30 cm (one foot) of water rise toward the northeast coast of North America by 2100. This would be on top of the average global sea level rise expected as a result of global warming. Although the study team did not try to estimate that mean global sea level rise, their simulations indicated that melt from Greenland alone under the 3 percent scenario could raise sea levels by an average of 53 cm (21 inches).

If the annual increase in the melt rate dropped to 1 percent, the runoff would not raise northeastern sea levels by more than the 20 cm (8 in) found in the earlier study in Nature Geoscience. But if the melt rate continued at its present 7 percent increase per year through 2050 and then leveled off, the study suggests that the northeast coast could see as much as 51 cm (20 in) of sea level rise above a global average that could be several feet. However, Hu cautioned that other modeling studies have indicated that the 7 percent scenario is unlikely.

In addition to sea level rise, Hu and his co-authors found that, if the Greenland melt rate were to defy expectations and continue its 7 percent increase, this would drain enough fresh water into the North Atlantic to weaken the oceanic circulation that pumps warm water to the Arctic. Ironically, this weakening of the meridional overturning circulation would help the Arctic avoid some of the warmed ocean impacts of global warming and lead to at least the temporary recovery of Arctic sea ice by the end of the century.

The northeast coast of North America is especially vulnerable to the effects of Greenland ice melt because of the way a north-south oceanic flow, known as the meridional overturning circulation, acts like a conveyor belt transporting water through the Atlantic Ocean. The circulation carries warm Atlantic water from the tropics to the north, where it cools and descends to create a dense, deep layer of cold water flowing south. As a result, sea level is currently about 71 cm (28 in) lower in the North Atlantic than the North Pacific, which lacks such a dense layer.

If the melting of the Greenland Ice Sheet were to increase by 3 percent or 7 percent yearly, the additional fresh water could partially disrupt the northward conveyor belt.

This would reduce the accumulation of deep, dense water. Instead, the deep water would be slightly warmer, expanding and elevating the surface across portions of the North Atlantic.

"The oceans will not rise uniformly as the world warms," says NCAR scientist Gerald Meehl, a co-author of the paper. "Ocean dynamics will push water in certain directions, so some locations will experience sea level rise that is larger than the global average."

The research was funded by the U.S. Department of Energy and by the National Science Foundation. It was conducted by scientists at NCAR, the University of Colorado at Boulder, and Florida State University.

Title:
"Transient Response of the MOC and Climate to Potential Melting of the Greenland Ice Sheet in the 21st Century"
Authors:
Aixue Hu, Gerald Meehl: Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado, USA;

Weiqing Han: Department of Atmospheric and Oceanic Sciences, University of Colorado, Boulder, Colorado, USA;

Jianjun Yin: Center for Ocean-Atmospheric Prediction Studies (COAPS), Florida State University, Tallahassee, Florida, USA.

Citation:
Hu, A., G. A. Meehl, W. Han, and J. Yin (2009), Transient response of the MOC and climate to potential melting of the Greenland Ice Sheet in the 21st century, Geophys. Res.

Lett., 36, L10707, doi:10.1029/2009GL037998

Contact information for authors:
Aixue Hu: +1 (303) 497 1334, ahu@ucar.edu Gerald Meehl: +1 (303) 497 1331, meehl@ucar.edu

Peter Weiss | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

nachricht Planet at risk of heading towards irreversible “Hothouse Earth” state
07.08.2018 | Potsdam-Institut für Klimafolgenforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Can radar replace stethoscopes?

14.08.2018 | Medical Engineering

The end-Cretaceous extinction unleashed modern shark diversity

14.08.2018 | Life Sciences

Light-controlled molecules: Scientists develop new recycling strategy

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>