Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Megascale icebergs run aground

11.08.2014

Finding the deepest iceberg scours to date provides new insights into the Arctic’s glacial past

Scientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have found between Greenland and Spitsbergen the scours left behind on the sea bed by gigantic icebergs. The five lineaments, at a depth of 1,200 metres, are the lowest-lying iceberg scours yet to be found on the Arctic sea floor.


Polarsterns Fächersonarsystem

Polarstern's multibeam system (Illustration: Alfred-Wegener-Institut)

This finding provides new understanding of the dynamics of the Ice Age and the extent of the Arctic ice sheet thousands of years ago. In addition, the researchers could draw conclusions about the export of fresh water from the Arctic into the North Atlantic. The AWI scientists have published their findings in the online portal of the scientific journal Geophysical Research Letters.

“Whenever icebergs run aground, they leave scours on the seabed. Depending on their depth and location, those markings may continue to exist over long periods of time,” explained Jan Erik Arndt, AWI bathymetrician and lead author for this paper.

It is traces exactly like this that he, together with three colleagues at AWI, discovered on the Hovgaard Ridge. The Hovgaard Ridge is a plateau in the deep Arctic Sea, located a good 400 kilometres off of Greenland’s eastern coast. Found at a depth of 1,200 metres the five lineaments are the deepest iceberg scours found to date in the Arctic. The scours are as much as four kilometres long and 15 metres in depth.

“Such scours are a window into the past. Thanks to these iceberg scours we now know that a few very large, but also many smaller icebergs, passed across the Hovgaard Ridge,” the scientist said.

The discovery of the scours on Hovgaard Ridge was fortuitous and by no means the result of a defined search. Jan Erik Arndt and his colleagues discovered the lineaments when examining bathymetric data from the year 1990. The data were collected by the research ship Polarstern while preparing cartography for the Fram Strait. “When we examined the data once again and in greater detail, we became aware of the scours. Given their depth, it quickly became clear that we had found something very interesting,” says Jan Erik Arndt.

The scientists today work with better hardware and software than what was available in the 1990s. This new technology allows closer scrutiny of the old data. That is why the scours have surfaced on the scientists’ monitors only now, 24 years after the data were collected.

The scientists can, however, only roughly bracket the period within which the icebergs scoured the ridge crest. It is clear, however, that it must have taken place within the past 800,000 years. Since sea level during the glacial period was a good 120 metres lower than today, the icebergs reached to a depth of at least 1,080 metres below sea level. Since about a tenth of an iceberg will, as a rule, be exposed, AWI scientists estimate the height of the iceberg to be roughly 1,200 metres – about three times the height of the Empire State Building. “To calve such megascale icebergs, the edge of the ice sheet covering the Arctic Ocean must have been at least 1,200 metres thick,” Jan Erik Arndt notes.

Today scientists search in vain for such megascale icebergs. “We currently find the largest icebergs in the Antarctic. The very biggest reach only 700 metres below the water’s surface,” noted the bathymetrician. One remaining riddle is the birthplace of the massive icebergs that scraped Hovgaard Ridge. The AWI scientists suggest that two areas off the northern coast of Russia are the most likely sites.

The researchers are interested in these scours not only because of the size of the icebergs. The traces have caused a flare up in the old discussion about how fresh water was transported from the Arctic and into the Atlantic Ocean. In the past, some scientists assumed that thick sea ice was primarily responsible for fresh water export from the Arctic. The newly discovered scours, however, support another hypothesis: Large icebergs drifted southward through the Fram Strait, carrying large volumes of frozen fresh water into the North Atlantic.

Numerous studies make the increased imports of fresh water responsible for the end of North Atlantic deep water formation at the close of the last ice age. As a consequence, the Gulf Stream ebbed, making for drastic cooling in Europe. Since the currents in the Atlantic are an important engine, driving the global system of circulation, the effects were perceived around the world. “The fact that icebergs of this order of magnitude were driven from the Arctic is clear evidence that icebergs played a more serious role in freshwater imports than what we had previously assumed,” Jan Erik Arndt concludes.

Notes for Editors:
Printable photos and graphics are available at http://www.awi.de/en/news/press_releases/.

The technical article appeared in the online edition of Geophysical Research Letters:
Jan Erik Arndt, Frank Niessen, Wilfried Jokat, Boris Dorschel: Deep water paleo-iceberg scouring on top of Hovgaard Ridge–Arctic Ocean, DOI: 10.1002/2014GL060267 (Link: http://onlinelibrary.wiley.com/doi/10.1002/2014GL060267/abstract)

To obtain further scientific details from the Alfred Wegener Institute, please contact:
• Jan Erik Arndt (Phone: +49-471-4831-1369, e-mail: Jan.Erik.Arndt(at)awi.de)

In the AWI Press Office, Ms. Anne Kliem (Phone: +49-471-4831-2006, e-mail: medien(at)awi.de) is available for further questions.

Follow the Alfred Wegener Institute on Twitter (https://twitter.com/#!/AWI_de) and Facebook (http://www.facebook.com/AlfredWegenerInstitut). In this way you receive all the current reports as well as information on interesting everyday stories drawn from the work and people of the Institute.

The Alfred Wegener Institute conducts research in the Arctic, Antarctic and oceans of the high and mid-latitudes. It coordinates polar research in Germany and provides major infrastructure to the international scientific community, such as the research icebreaker Polarstern and stations in the Arctic and Antarctica. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw - Informationsdienst Wissenschaft

Further reports about: AWI Arctic Atlantic Helmholtz-Zentrum Meeresforschung Ocean iceberg

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>