Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mediterranean meteorological tide has increased by over a millimetre a year since 1989

24.11.2014

A new database developed by the University of Cantabria (Spain) provides data on sea level variation due to atmospheric changes in the south of Europe between 1948 and 2009. Over the last two decades sea levels have increased in the Mediterranean basin.

"The meteorological sea level or meteorological tide component is the variation of the sea level as a result of atmospheric changes or more specifically, changes in the atmospheric pressure and the wind at the sea surface," Alba Cid explains to SINC, Alba being the lead author of the study published in the journal 'Climate Dynamics' which analyses 62 years' worth of data for this sea level component.


This is Les Rotes beach in Denia (Alicante, Spain).

Credit: Echiner1

Cid and her team at the Environmental Hydraulics Institute at the University of Cantabria (Spain) have generated two (long-term and high resolution) time series for meteorological tides in the Atlantic and Mediterranean basins in the south of Europe and the Canary Islands.

In total, they have analysed the trends from 1948 to 2009, reflected in a new Global Ocean Surges (GOS) database. The simulation tool used is the numeric Regional Ocean Modelling System (ROMS) developed by the University of Rutgers (USA).

The results are very different depending on the period. "The trends from 1948 to 1989 are very small and negative in all of the area analysed, which means that the meteorological tide has decreased during this time period," points out Cid.

On the African coast of the Atlantic, the Adriatic coast and the north-east of the Eastern basin, the meteorological component to sea level has decreased by 0.35 millimetres for every year during this period. The trends are weaker on the Spanish coast of the north Atlantic and along the African coast in the Eastern basin of the Mediterranean.

However, over the last two decades, from 1989 to 2009, the trends are positive, or rather sea levels have increased, and to a greater degree. The tides present values of less than 0.5 mm per year in the Atlantic basin and more than 1 mm a year in several areas of the Mediterranean coast.

The GOS database also differentiates between summer and winter in each time series. According to the study, the trends observed in winter are negative in the areas analysed. The decrease in sea levels is more obvious (1mm per year) in the centre of the Mediterranean and the Adriatic Sea.

The sea level rises in summer, especially in the North Atlantic, the Spanish coast of the Mediterranean and the Tunisian coast. "Although negative trends of 0.3 mm a year can also be observed during this season along the African coast of the Atlantic," the researchers highlight from the study.

Hourly data for 62 years

To validate the results of the numerical simulations, the researchers have compared the data generated every hour from 1948 to 2009 in 58 coastal locations in Spain, Portugal, France, Italy and the Canary Islands, with real data measured by tide gauges and satellites. "The results have allowed us to calculate these long-term trends," adds Cid.

From this work and the data described in the article, the investigators are now analysing the most extreme levels and their relation to climate patterns, such as for example the North Atlantic oscillation (NAO). "We will shortly be publishing an article with the results obtained," concludes the lead author.


References:

Alba et al. "A high resolution hindcast of the meteorological sea level component for Southern Europe: the GOS dataset" Climate Dynamics 43 (7-8): 2167-2184 october 2014 DOI: 10.1007/s00382-013-2041-0

SINC | EurekAlert!
Further information:
http://www.fecyt.es/fecyt/home.do

Further reports about: African Climate Dynamics GOS Mediterranean Ocean long-term sea level

More articles from Earth Sciences:

nachricht "Airlift" facility: TU Freiberg tests new mining technology in research and training mine
22.10.2019 | Technische Universität Bergakademie Freiberg

nachricht Atmospheric pressure impacts greenhouse gas emissions from leaky oil and gas wells
21.10.2019 | University of British Columbia

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>