Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Major Tropical Cyclone Funso Analyzed by Two NASA Satellites

26.01.2012
Tropical Cyclone Funso is now a dangerous Category 4 cyclone in the Mozambique Channel, moving southward between Mozambique on the African mainland and the island nation of Madagascar. As Funso became a major cyclone two NASA satellites were providing forecasters with valuable storm information.

Two instruments aboard NASA's Aqua satellite and instruments aboard NASA and JAXA's Tropical Rainfall Measuring Mission (TRMM) satellite provided cloud extent, cloud temperature, rainfall rates, and a look at the eye of the storm.


This visible image of Tropical Cyclone Funso was captured by the MODIS instrument on NASA's Aqua satellite on Jan. 25 at 7:40 UTC (2:40 a.m. EST). Tropical Cyclone Funso is still over the Mozambique Channel and its 11 mile-wide eye is clearly visible. Credit: NASA Goddard MODIS Rapid Response Team

On Jan. 25 at 7:40 UTC (2:40 a.m. EST), the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on NASA's Aqua satellite captured a visible image of Tropical Cyclone Funso. The image revealed the cloud cover extends from Mozambique on the African mainland, east to the coast of the island nation of Madagascar. MODIS imagery also revealed a clear 11 mile-wide eye.

When NASA's Aqua satellite passed over Cyclone Funso the day before, January 24 at 11:17 UTC (6:17 a.m. EST) the Atmospheric Infrared Sounder (AIRS) instrument measured the cloud top temperatures. Thunderstorm cloud tops around the entire center of circulation colder than -63 Fahrenheit (-52.7 Celsius) indicating strong storms, dropping heavy rainfall.

The TRMM satellite also had a good view of powerful tropical cyclone Funso battering the Mozambique coast when it flew over on January 24, 2012 at 2204 UTC (5:04 p.m. EST). TRMM data showed that Funso was dropping moderate to heavy rainfall in bands covering the Mozambique Channel from eastern Mozambique to western Madagascar.

On January 25, 2012 at 0900 UTC (4 a.m. EST), Major Tropical Cyclone Funso had maximum sustained winds of 120 knots (138 mph/222 kph). Hurricane-force winds extend out 40 miles (64 km) from the center. It was located near 22.7 South and 38.7 East, about 400 nautical miles (460 miles/741 kmh) northeast of Maputo, Mozambique. It was moving to the south-southwest at 4 knots (~4.6 mph/7.4 kph). Funso is generating maximum significant waves 32 feet (9.7 meters) high.

Cyclone Funso continues to track the over open waters of the southern Mozambique Channel and forecasts take it out into the Southern Indian Ocean over the next three days without any danger of a direct landfall.

Text Credit: Rob Gutro
NASA's Goddard Space Flight Center, Greenbelt, Md.

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2012/h2012_Funso.html

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Some brain tumors may respond to immunotherapy, new study suggests

11.12.2018 | Studies and Analyses

Researchers image atomic structure of important immune regulator

11.12.2018 | Health and Medicine

Physicists edge closer to controlling chemical reactions

11.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>