Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magmatically triggered slow earthquake discovered at Kilauea Volcano, Hawaii

02.09.2008
From June 17-19th 2007, Kilauea experienced a new dike intrusion, where magma rapidly moved from a storage reservoir beneath the summit into the east rift zone and extended the rift zone by as much as 1 meter.

Researchers from the University of Hawaii at Manoa (UHM), Scripps Institution of Oceanography at UC San Diego, and the U.S. Geological Survey (USGS) Hawaiian Volcano Observatory have now discovered that the 2007 dike intrusion was not the only action going on: the dike also triggered a "slow earthquake" on Kilauea's south flank, demonstrating how magmatism and earthquake faulting at Kilauea can be tightly connected. The research findings will be published in the Friday, August 29th edition of the prestigious journal Science.

Slow earthquakes are a special type of earthquake where fault rupture occurs too slowly (over periods of days to months) to produce any felt shaking. Slow earthquakes of magnitude 5.5-5.7 have been previously found to periodically occur on the flanks of Kilauea, and have been identified by ground motion data on Global Positioning System (GPS) stations. A general understanding of slow earthquake initiation, however, is still unresolved.

This new study is the first observation of slow earthquake that was triggered by a dike intrusion. A team lead by Associate Researcher Ben Brooks of the School of Ocean and Earth Science and Technology (SOEST) at UHM used a combination of satellite and GPS data to demonstrate that the 2007 slow earthquake began about 15-20 hours after the start of the dike intrusion, and that the slow earthquake was accompanied by elevated rates of small magnitude microearthquakes, a pattern identical to what has been seen from past slow earthquakes. The authors also performed stress modeling to demonstrate how the processes associated with the volcanism at Kilauea contributes to the existence of the observed slow earthquakes. The results suggest that both extrinsic (intrusion-triggering on short time scales) and intrinsic (secular deformation on long time scales) processes produce slow earthquakes at Kilauea.

"Because of the large deformation signals from the dike intrusion, we needed to do some detailed detective work to prove the existence of this slow earthquake." says Brooks, an associate researcher in the Hawaii Institute for Geophysics and Planetology (HIGP) at UHM. "We used state-of-the-art InSAR satellite data to constrain the dike source and that allowed us to demonstrate the existence of the slow earthquake motions recorded by the GPS stations on Kilauea's flank."

To determine the presence of this slow earthquake, a multitude of measuring tools were required. "A dike intrusion could be seen with the seismic monitoring network, the tiltmeters and the GPS network, but these slow earthquakes can only be seen with the GPS network," says James Foster, an assistant researcher with HIGP, and a co-author in the study.

"These slow earthquakes are an interesting phenomenon that has only been studied within the last decade and we're still trying to figure out how they fall into the bigger picture of earthquakes, says Cecily Wolfe, also an associate professor in HIGP and another co-author. "They're definitely a part of the earthquakes cycle, and trying to understand how they relate to other earthquakes and how they may be generated and triggered will give us greater insights into how predicable earthquakes are."

Tara Hicks Johnson | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Earth Sciences:

nachricht New studies increase confidence in NASA's measure of Earth's temperature
24.05.2019 | NASA/Goddard Space Flight Center

nachricht New Measurement Device: Carbon Dioxide As Geothermometer
21.05.2019 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>