Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Magma power for geothermal energy?

18.02.2011
When a team of scientists drilling near an Icelandic volcano hit magma in 2009, they had to abandon their planned experiments on geothermal energy. But the mishap could point the way to an alternative source of geothermal power.

"Because we drilled into magma, this borehole could now be a really high-quality geothermal well," said Peter Schiffmann, professor of geology at UC Davis and a member of the research team along with fellow UC Davis geology professor Robert Zierenberg and UC Davis graduate student Naomi Marks. The project was led by Wilfred Elders, a geology professor at UC Riverside.

A paper describing geological results from the well was published this month in the journal Geology.

When tested, the magma well produced dry steam at 750 degrees Fahrenheit (400 degrees Celsius). The team estimated that this steam could generate up to 25 megawatts of electricity -- enough to power 25,000 to 30,000 homes.

That compares to 5 to 8 megawatts produced by a typical geothermal well, Elders said. Iceland already gets about one-third of its electricity and almost all of its home heating from geothermal sources.

The team was drilling into the Krafla caldera as part of the Iceland Deep Drilling Project, an industry-government consortium, to test whether "supercritical" water -- very hot water under very high pressure -- could be exploited as a source of power.

They planned to drill to 15,000 feet -- more than two miles deep-- but at 6,900 feet, magma (molten rock from the Earth's core) flowed into the well, forcing them to stop.

The composition of magma from the borehole is also providing insight into how magmas form beneath Iceland, Schiffmann said.

The team included researchers from two Icelandic power companies, HS Orka hf and Landsvirkjun Power; Iceland GeoSurvey; the U.S. Geological Survey; Stanford University; New Mexico Institute of Mining and Technology; and the University of Oregon, Eugene; as well as UC Davis and UC Riverside.

The work was funded by the National Science Foundation and the International Continental Scientific Drilling Program.

Media contact(s):
Peter Schiffmann, Geology, (530) 752-3669, pschiffmann@ucdavis.edu
Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu
http://www.news.ucdavis.edu/search/news_detail.lasso?id=9775

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>