Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Long-Stressed Europa Likely Off-Kilter at One Time

19.09.2013
By analyzing the distinctive cracks lining the icy face of Europa, NASA scientists found evidence that this moon of Jupiter likely spun around a tilted axis at some point.

This tilt could influence calculations of how much of Europa's history is recorded in its frozen shell, how much heat is generated by tides in its ocean, and even how long the ocean has been liquid.


The distinctive cracks crisscrossing Europa's icy surface are clues to the stresses that this moon of Jupiter has experienced. This mosaic image was taken by NASA's Galileo satellite, which flew past this moon of Jupiter six times between 1996 and 1999. Image Credit: NASA/JPL-Caltech/University of Arizona

"One of the mysteries of Europa is why the orientations of the long, straight cracks called lineaments have changed over time. It turns out that a small tilt, or obliquity, in the spin axis, sometime in the past, can explain a lot of what we see," said Alyssa Rhoden, a postdoctoral fellow with Oak Ridge Associated Universities who is working at NASA's Goddard Space Flight Center in Greenbelt, Md. She is the lead author of a paper in the September–October issue of Icarus that describes the results.

Europa's network of crisscrossing cracks serves as a record of the stresses caused by massive tides in the moon's global ocean. These tides occur because Europa travels around Jupiter in a slightly oval-shaped orbit. When Europa comes closer to the planet, the moon gets stretched like a rubber band, with the ocean height at the long ends rising nearly 100 feet (30 meters). That's roughly as high as the 2004 tsunami in the Indian Ocean, but it happens on a body that measures only about one-quarter of Earth's diameter. When Europa moves farther from Jupiter, it relaxes back into the shape of a ball.

The moon's ice layer has to stretch and flex to accommodate these changes, but when the stresses become too great, it cracks. The puzzling part is why the cracks point in different directions over time, even though the same side of Europa always faces Jupiter.

A leading explanation has been that Europa's frozen outer shell might rotate slightly faster than the moon orbits Jupiter. If this out-of-sync rotation does occur, the same part of the ice shell would not always face Jupiter.

Rhoden and her Goddard co-author Terry Hurford put that idea to the test using images taken by NASA's Galileo spacecraft during its nearly eight-year mission, which began in 1995. "Galileo produced many paradigm shifts in our understanding of Europa, one of which was the phenomena of out of sync rotation," said Claudia Alexander of NASA's Jet Propulsion Laboratory in Pasadena, Calif., who was the project manager when the Galileo mission ended.

Rhoden and Hurford compared the pattern of cracks in a key area near Europa's equator to predictions based on three different explanations. The first set of predictions was based on the rotation of the ice shell. The second set assumed that Europa was spinning around a tilted axis, which, in turn, made the orientation of the pole change over time. This effect, called precession, looks very much like what happens when a spinning toy top has started to slow down and wobble. The third explanation was that the cracks were laid out in random directions.

The researchers got the best performance when they assumed that precession had occurred, caused by a tilt of about one degree, and combined this effect with some random cracks, said Rhoden. Out-of-sync rotation was surprisingly unsuccessful, in part because Rhoden found an oversight in the original calculations for this model.

The results are compelling enough to satisfy Richard Greenberg, the University of Arizona professor who had earlier proposed the idea of out-of sync rotation.

"By extracting new information from the Galileo data, this work refines and improves our understanding of the very unusual geology of Europa," said Greenberg, who was Rhoden's undergraduate advisor and Hurford's graduate advisor.

The existence of tilt would not rule out the out-of-sync rotation, according to both Rhoden and Greenberg. But it does suggest that Europa's cracks may be much more recent than previously thought. That's because the spin pole direction may change by as much as a few degrees per day, completing one precession period over several months. On the other hand, with the leading explanation, one full rotation of the ice sheet would take roughly 250,000 years. In either case, several rotations would be needed to explain the crack patterns.

A tilt also could affect the estimates of the age of Europa's ocean. Because tidal forces are thought to generate the heat that keeps Europa's ocean liquid, a tilt in the spin axis might suggest that more heat is generated by tidal forces. This, in turn, might keep the ocean liquid longer.

The analysis does not specify when the tilt would have occurred. So far, measurements have not been made of the tilt of Europa's axis, and this is one goal scientists have for Europa missions in the future.

"One of the fascinating open questions is how active Europa still is. If researchers pin down Europa's current spin axis, then our findings would allow us to assess whether the clues we are finding on the moon's surface are consistent with the present-day conditions," said Rhoden.

The Galileo mission was managed by NASA's Jet Propulsion Laboratory in Pasadena, Calif., for the agency's Science Mission Directorate.

For information about NASA and agency programs, visit:
http://www.nasa.gov/
Elizabeth Zubritsky / Nancy Neal-Jones
NASA's Goddard Space Flight Center, Greenbelt, Md.
301-614-5438 / 301-286-0039
elizabeth.a.zubritsky@nasa.gov / nancy.n.jones@nasa.gov
Jia-Rui C. Cook
NASA's Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0850
jccook@jpl.nasa.gov

Nancy Neal-Jones | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/long-stressed-europa-likely-off-kilter-at-one-time/

More articles from Earth Sciences:

nachricht Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle
22.06.2018 | Technical University of Denmark

nachricht Polar ice may be softer than we thought
22.06.2018 | Eberhard Karls Universität Tübingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>