Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Limited contribution from land based carbon mitigation to climate stabilization

19.11.2014

Protecting, cropping and enhancing carbon in vegetation and soils can have a limited contribution in achieving climate stabilization by the end of this century.

However, future land-management will be crucial to fulfill human needs. Both objectives, climate mitigation and fulfilling human needs, can only be achieved by sustainable and integrated land management, says Prof. Dr. Ernst-Detlef Schulze from Max Planck Institute for Biogeochemistry in Jena, Germany and co-author of a new study published today in Nature Communications.

Land-based climate mitigation requires land and vegetation biomass that is in competition with a growing demand for food, wood products, energy, bio-economy, and biodiversity conservation.

Prof. Schulze states: “Up to 38 pentagrams* carbon (C) avoided emissions and carbon sequestration are feasible until 2050 if moderate economic incentives are put in place, where mitigation from bioenergy is equivalent to 3 to 8% of the estimated energy consumption in 2050.

This estimated contribution towards climate mitigation is smaller than previous estimates, which considered limited sustainability safeguards in the deployment of large-scale mitigation activities, and which avoided accounting of associated emissions of non-CO2 greenhouse gases (methane and nitrous oxide).”

Reducing tropical deforestation is one of the most attractive (yet challenging) activities, followed by the substitution of fossil fuels by bioenergy, increasing soil carbon in rangelands and afforestation of degraded land, and reducing methane and nitrous oxide emissions in agriculture.

Dr. Pep Canadell, lead author and research scientist in the Commonwealth Scientific and Industrial Research Organization (CSIRO) in Australia, says that “current expectations for land demand to fulfill all the needs for food, wood products, energy, bio-economy, and climate mitigation until 2050 surpass the actual land that is available by factor of 3 to 7.

Thus, future requirements of the various sectors in the society are incompatible with the available land. A partial fulfillment for those land and biomass expectation would require humankind to move into areas currently considered remote and low-productivity lands”.

The assessment was based on strong sustainability safeguards, did not rely on improbable global carbon markets or on high carbon prices based on what has happened over the past 20 years of climate negotiations; and it accounted for all greenhouse-gas emissions by land-use.

The study indicates that the present and future high needs for land-based products can only be reached by sustainable intensification of land-use. This includes a continuation of searching for increased yields, and the increase of the number of crops used on a piece of land over time.

Critical to the sustainable intensification of biomass production is an improvement of nitrogen management to minimize nitrous oxide emissions. Emissions of non-CO2 greenhouse gases from agriculture and animal husbandry presently counteract the global natural carbon sink capacity of global vegetation. (P.C.)

*1 petgram (Pg) is equivalent to 1 billion tons

Contact:
Prof. Dr. Ernst-Detlef Schulze
MPI for Biogeochemistry, Jena, Germany
Email: dschulze@bgc-jena.mpg.de
Phone +49 3641 576100

Dr. Josep (Pep) Canadell
CSIRO Oceans and Atmosphere Flagship, Canberra, Australia
Email: pep.canadell@csiro.au
Phone + 61 408 020 952

Original publication:
Josep G Canadell, E. Detlef Schulze (2014). Global potential of biospheric carbon management for climate mitigation. Nature Communications, 5:5282. DOI: 10.1038/ncomms6282

Susanne Héjja | Max-Planck-Institut
Further information:
http://www.bgc-jena.mpg.de

More articles from Earth Sciences:

nachricht Global study of world's beaches shows threat to protected areas
19.07.2018 | NASA/Goddard Space Flight Center

nachricht NSF-supported researchers to present new results on hurricanes and other extreme events
19.07.2018 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

NSF-supported researchers to present new results on hurricanes and other extreme events

19.07.2018 | Earth Sciences

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>