Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightning reshapes rocks at the atomic level, Penn study finds

06.08.2015

At a rock outcropping in southern France, a jagged fracture runs along the granite. The surface in and around the crevice is discolored black, as if wet or covered in algae. But, according to a new paper coauthored by the University of Pennsylvania's Reto Gieré, the real explanation for the rock's unusual features is more dramatic: a powerful bolt of lightning.

Using extremely high-resolution microscopy, Gieré, professor and chair of the Department of Earth and Environmental Science in Penn's School of Arts & Sciences, and his coauthors found that not only had the lightning melted the rock's surface, resulting in a distinctive black "glaze," but had transferred enough pressure to deform a thin layer of quartz crystals beneath the surface, resulting in distinct atomic-level structures called shock lamellae.


Shock lamellae are formed when lightning hits rock, the study found. Here, a single lamella is seen under a transmission electron microscope. Lamellae appear as straight, parallel lines and occur when the crystal structure of a mineral deforms in response to a vast wave of pressure.

Credit: University of Pennsylvania

Prior to this study, the only natural events known to create this type of lamellae were meteorite impacts.

"I think the most exciting thing about this study is just to see what lightning can do," Gieré said. "To see that lightning literally melts the surface of a rock and changes crystal structures, to me, is fascinating."

Gieré said the finding serves as a reminder to geologists not to rush to interpret shock lamellae as indicators of a meteorite strike.

"Most geologists are careful; they don't just use one observation," he said, "But this is a good reminder to always use multiple observations to draw big conclusions, that there are multiple mechanisms that can result in a similar effect."

Gieré collaborated on the study with Wolfhard Wimmenauer and Hiltrud Müller-Sigmund of Albert-Ludwigs-Universität, Richard Wirth of GeoForschungsZentrum Potsdam and Gregory R. Lumpkin and Katherine L. Smith of the Australian Nuclear Science and Technology Organization.

The paper was published in the journal American Mineralogist.

Geologists have long known that lightning, through rapid increases in temperature as well as physical and chemical effects, can alter sediments. When it strikes sand, for example, lightning melts the grains, which fuse and form glass tubes known as fulgurites.

Fulgurites can also form when lightning strikes other materials, including rock and soil. The current study examined a rock fulgurite found near Les Pradals, France. Gieré and colleagues took samples from the rock, then cut thin sections and polished them.

Under an optical microscope, they found that the outer black layer -- the fulgurite itself -- appeared shiny, "almost like a ceramic glaze," Gieré said.

The layer was also porous, almost like a foam, due to the lightning's heat vaporizing the rock's surface. A chemical analysis of the fulgurite layer turned up elevated levels of sulfur dioxide and phosphorous pentoxide, which the researchers believe may have derived from lichen living on the rock's surface at the time of the lightning strike.

The team further studied the samples using a transmission electron microscope, which allows users to examine specimens at the atomic level. This revealed that the fulgurite lacked any crystalline structure, consistent with it representing a melt formed through the high heat from the lightning strike.

But, in a layer of the sample immediately adjacent to the fulgurite, slightly deeper in the rock, the researchers spotted an unusual feature: a set of straight, parallel lines known as shock lamellae. This feature occurs when the crystal structure of quartz or other minerals deform in response to a vast wave of pressure.

"It's like if someone pushes you, you rearrange your body to be comfortable," Gieré said. "The mineral does the same thing."

The lamellae were present in a layer of the rock only about three micrometers wide, indicating that the energy of the lightning bolt's impact dissipated over that distance.

This characteristic deformation of crystals had previously only been seen in minerals from sites where meteorites struck. Shock lamellae are believed to form at pressures up to more than 10 gigapascals, or with 20 million times greater force than a boxer's punch.

Gieré and colleagues hope to study rock fulgurites from other sites to understand the physical and chemical effects of lightning bolts on rocks in greater detail.

Another takeaway for geologists, rock climbers and hikers who spend time on rocks in high, exposed places is to beware when they see the tell-tale shiny black glaze of a rock fulgurite, as it might indicate a site prone to lightning strikes.

"Once it was pointed out to me, I started seeing it again and again," he said. "I've had some close calls with thunderstorms in the field, where I've had to throw down my metal instruments and run."

###

The study was supported in part by the Australian Nuclear Science and Technology Organization.

Media Contact

Katherine Unger Baillie
kbaillie@upenn.edu
215-898-9194

 @Penn

http://www.upenn.edu/pennnews 

Katherine Unger Baillie | EurekAlert!

Further reports about: Nuclear atomic level crystals lightning lightning strikes quartz shock structures

More articles from Earth Sciences:

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

nachricht Drones survey African wildlife
11.07.2018 | Schweizerischer Nationalfonds SNF

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>