Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lightning's mirror image ... only much bigger

25.08.2009
Scientists capture 1-second image of huge lightning flowing 40 miles upward from storm

With a very lucky shot, scientists have captured a one-second image and the electrical fingerprint of huge lightning that flowed 40 miles upward from the top of a storm.

These rarely seen, highly charged meteorological events are known as gigantic jets, and they flash up to the lower levels of space, or ionosphere.

While they don't occur every time there is lightning, they are substantially larger than their downward striking cousins.

"Despite poor viewing conditions as a result of a full moon and a hazy atmosphere, we were able to clearly capture the gigantic jet," said study leader Steven Cummer, an electrical and computer engineer at Duke University in North Carolina.

A paper reporting Cummer's results appears online today in the journal Nature Geoscience.

Images of gigantic jets have only been recorded on five occasions since 2001. The Duke University team caught a one-second view and magnetic field measurements that are now giving scientists a much clearer understanding of these rare events.

"This confirmation of visible electric discharges extending from the top of a storm to the edge of the ionosphere provides an important new window on processes in Earth's global electrical circuit," said Brad Smull, program director in NSF's Division of Atmospheric Sciences, which funded the research.

"Our measurements show that gigantic jets are capable of transferring a substantial electrical charge to the lower ionosphere," Cummer said.

"They are essentially upward lightning from thunderclouds that deliver charge just like conventional cloud-to-ground lightning. What struck us was the size of this event."

It appears from the measurements that the amount of electricity discharged by conventional lightning and gigantic jets is comparable, Cummer said.

But the gigantic jets travel farther and faster than conventional lightning because thinner air between the clouds and ionosphere provides less resistance.

Whereas a conventional lightning bolt follows a six-inch channel and travels about 4.5 miles down to earth, the gigantic jet recorded by the scientists contained multiple channels and traveled about 40 miles upward.

"Given that reservoirs of electric charge in thunderstorms are the sources for both lightning and gigantic jets, and that both events involve contact between these reservoirs and a very large conducting surface, it is not surprising that their charge transfers are comparable," Cummer said.

Scientists don't know what conditions or what types of storms are conducive to gigantic jet formation.

It has been difficult in the past to obtain images of gigantic jets because they occur so quickly that cameras have to be trained on them at the precise moment they occur.

Cummer caught the gigantic jet almost by accident.

The equipment had been set to capture another phenomenon known as sprites, which were first photographed in 1989.

Sprites are electrical discharges that occur above storm clouds and are colored red or blue, with jellyfish-like tendrils hanging down.

Cummer maintains a low-light video camera trained to the sky and programmed to start recording when specific meteorological conditions occur.

At the same time, other equipment constantly measures radio emissions in the same sector to capture electrical events. A special GPS system ensures that the readings from all the equipment are synchronized.

Cummer is planning to install a low-light, high-speed camera to capture gigantic jet images in color, which could provide additional information about chemical processes and temperatures inside the phenomenon.

Other Duke University team members were Jingbo Li, Feng Han, Gaopeng Lu and Nicolas Jaugey. Walter Lyons and Thomas Nelson from FMA Research, Fort Collins, Colo., also participated.

NSF-PR 09-156

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2009, its budget is $9.5 billion, which includes $3.0 billion provided through the American Recovery and Reinvestment Act. NSF funds reach all 50 states through grants to over 1,900 universities and institutions. Each year, NSF receives about 44,400 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Earth Sciences:

nachricht In the ocean's twilight zone, tiny organisms may have giant effect on Earth's carbon cycle
19.07.2018 | Florida State University

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Scientists uncover the role of a protein in production & survival of myelin-forming cells

19.07.2018 | Life Sciences

In the ocean's twilight zone, tiny organisms may have giant effect on Earth's carbon cycle

19.07.2018 | Earth Sciences

Lying in a foreign language is easier

19.07.2018 | Social Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>