Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Life's molecules could lie within reach of Mars Curiosity rover

06.07.2012
Stick a shovel in the ground and scoop. That's about how deep scientists need to go in order to find evidence for ancient life on Mars, if there is any to be found, a new study suggests. That's within reach of Curiosity, the Mars Science Laboratory rover expected to land on the Red Planet next month.
The new findings, which suggest optimal depths and locations to probe for organic molecules like those that compose living organisms as we know them, could help the newest Mars rover scout for evidence of life beneath the surface and within rocks. The results suggest that, should Mars harbor simple organic molecules, NASA's prospects for discovering them during Curiosity's explorations are better than previously thought, said Alexander Pavlov of the NASA Goddard Space Flight Center in Greenbelt, Maryland, lead author of the study.

While these simple molecules could provide evidence of ancient Martian life, they could also stem from other sources like meteorites and volcanoes. Complex organic molecules could hint more strongly at the possibility of past life on the planet. These molecules, made up of 10 or more carbon atoms, could resemble known building blocks of life such as the amino acids that make up proteins.

Although complex carbon structures are trickier to find because they're more vulnerable to cosmic radiation that continuously bombards and penetrates the surface of the Red Planet, the new research by Pavlov and his colleagues provides suggestions for where to start looking. The amounts of radiation that rock and soil is exposed to over time, and how deep that radiation penetrates – an indicator of how deep a rover would have to sample to find intact organic molecules – is a subject of ongoing research.

The scientists report that chances of finding these molecules in the first 2 centimeters (0.8 inches) of Martian soil is close to zero. That top layer, they calculate, will absorb a total of 500 million grays of cosmic radiation over the course of one billion years – capable of destroying all organic material. A mere 50 grays, absorbed immediately or over time, would cause almost certain death to a human.

However, within 5 to 10 centimeters (2 to 4 inches) beneath the surface, the amount of radiation reduces tenfold, to 50 million grays. Although that's still extreme, the team reports that simple organic molecules, such as a single formaldehyde molecule, could exist at this depth – and in some places, specifically young craters, the complex building blocks of life could remain as well.
The study is scheduled to be published 7 July in Geophysical Research Letters, a journal of the American Geophysical Union.

"Right now the challenge is that past Martian landers haven't seen any organic material whatsoever," Pavlov said. "We know that organic molecules have to be there but we can't find any of them in the soil."

As Mars revolves around the Sun, it is constantly bombarded by very small meteors and interplanetary dust particles, which have plenty of organic compounds in them, Pavlov said. Therefore, over time they would have accumulated at the Martian surface.

The Mars Science Laboratory is the newest and largest of NASA's Martian landers and is scheduled to touch down August 2012. Curiosity doesn't have a shovel but, equipped with drilling technology, it will collect, store, and analyze samples of Martian material down to 5 centimeters below the surface of rock and soil. Past Martian rovers have only collected loose soil atop the surface that has been directly exposed to cosmic radiation, making the possibility for detecting organic molecules exceedingly slim.

When evaluating how deep organic molecules might persist beneath the surface, previous studies have mainly focused on the maximum depth, approximately 1.5 meters (5 feet), that cosmic radiation reaches because beyond that point organic molecules could survive, unharmed, for billions of years, Pavlov said. However, drilling to 1.5 meters or deeper is currently too expensive to engineer for a Martian rover.

So the team focused on more attainable depths – the first 20 cm (8 in) below the surface. They modeled the complex scenario of cosmic ray accumulation and its effects on organic molecules using a collection of important variables, including Martian rock and soil composition, changes in the planet's atmospheric density over time, and cosmic rays' various energy levels.

In addition to the finding that some simple carbon-containing molecules could exist within 10 cm (4 in) depth, the scientists emphasize that certain regions on Mars may have radiation levels far lower than 50 million grays near the surface – and so more complex molecules like amino acids could remain intact.

In order to find these molecules within the rover's drilling range (1 to 5 cm), the scientists found the best bet is to look at "fresh" craters that are no more than 10 million years old, unlike past expeditionary sites that mainly sampled from landscapes undisturbed for billions of years.

Compared to Martian landscapes undisturbed for one billion years or more, relatively young craters exhibit freshly exposed rock and soil that was once deeper beneath the surface. . The new research indicates that this material will have been near the surface for a short enough period of time that it's overall exposure to harmful radiation would not have been enough to wipe out organic molecules.

"When you have a chance to drill, don't waste it on perfectly preserved (landscapes)," Pavlov said. "You want to go to fresh craters because there's probably a better chance to detect complex organic molecules. Let Nature work for you."

Lewis Dartnell, a postdoctoral researcher at the University College London in the U.K., said the paper was a nice study that combined results from other studies with the latest radiation modeling. Dartnell was not part of the study, but has published previous work involving effects of cosmic radiation on the Martian surface.

"The next logical step," Dartnell said, "is to actually experiment and have a radiation source hit amino acids with radiation of similar energies as cosmic rays and determine how quickly those amino acids are destroyed because models can only do so much."

Curiosity is set to land in Gale crater – the same crater where the Spirit rover landed in 2004– on August 6. Whether this 3.5-billion-year-old crater has fresher craters within it is uncertain. However, Pavlov hopes that his team's findings will at least help guide NASA on where to drill once the rover has landed and influence where future generations of rover landers will touch down.

Notes for Journalists
Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this paper in press by clicking on this link: http://dx.doi.org/10.1029/2012GL052166

Or, you may order a copy of the final paper by emailing your request to Kate Ramsayer at kramsayer@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release are under embargo.

Title: "Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays"

Authors: Alexander A. Pavlov: Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA;

G. Vasilyev: Laboratory of Mass Spectrometry, Ioffe Physico-Technical Institute of Russian Academy of Sciences, St. Petersburg, Russia;

V. M. Ostryakov: St. Petersburg State Technical University, St. Petersburg, Russia;

A. K. Pavlov: Laboratory of Mass Spectrometry, Ioffe Physico-Technical Institute of Russian Academy of Sciences, St. Petersburg, Russia;

P. Mahaffy: Planetary Environments Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA.

Contact information for the authors: Alexander A. Pavlov, Email: alexander.pavlov@nasa.gov, Telephone: 301-614-5945

Kate Ramsayer | EurekAlert!
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht A Volcanic Binge And Its Frosty Hangover
21.02.2019 | Universität Heidelberg

nachricht Researchers get to the bottom of fairy circles
21.02.2019 | Georg-August-Universität Göttingen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>