Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large CO2 release speeds up ice age melting

27.08.2010
Radiocarbon dating is used to determine the age of everything from ancient artifacts to prehistoric corals on the ocean bottom.

But in a recent study appearing in the Aug. 26 edition of the journal, Nature, a Lawrence Livermore scientist and his colleagues used the method to trace the pathway of carbon dioxide released from the deep ocean to the atmosphere at the end of the last ice age.

The team noticed that a rapid increase in atmospheric CO2 concentrations coincided with a reduced amount of carbon-14 relative to carbon-12 (the two isotopes of carbon that are used for carbon dating and are referred to as radiocarbon) in the atmosphere.

“This suggests that there was a release of very ‘old’ or low 14/12CO2 from the deep ocean to the atmosphere during the end of the last ice age,” said Tom Guilderson, an author on the paper and a scientist at LLNL’s Center for Accelerator Mass Spectrometry.

The study suggests that CO2 release may speed up the melting following an ice age.

Radiocarbon in the atmosphere is regulated largely by ocean circulation, which controls the sequestration of CO2 in the deep sea through atmosphere-ocean carbon exchange. During the last ice age ( approximately 110,000 to 10,000 years ago), lower atmospheric CO2 levels were accompanied by increased atmospheric radiocarbon concentrations that have been credited to greater storage of CO2 in a poorly ventilated abyssal ocean.

“The ocean circulation was significantly different than it is today and carbon was being stored in the deep ocean in a manner that we don’t completely understand,” Guilderson said.

Using two sediment cores from the sub-Antarctic and subtropic South Pacific near New Zealand, the team dated the cores to be between 13,000 and 19,000 years old. Guilderson was able to use the carbon-14 in the cores as a tracer to determine not only when the large CO2 release occurred but the ocean pathway by which it escaped.

“In this case, the absence of a signal is telling us something important,” Guilderson said. “Deeper waters substantially depleted in carbon-14 were drawn to the upper layers and this is the main source of the CO2 during deglaciation.

Data suggests that the upwelling of this water occurred in the Southern Ocean, near Antarctica. In our cores off New Zealand, which lie in the path of waters which ‘turn over’ in the Southern Ocean, we don’t find anomalously low carbon-14/12 ratios.

This implies that either water which upwelled in the Southern Ocean, after 16,500 years ago, had a vigorous exchange with the atmosphere, allowing its 14C-clock to be reset, or the circulation was significantly different than what the current paradigm is. If the paradigm is wrong, then during the glacial and deglaciation, the North Pacific is much more important than we give it credit for,” Guilderson said.

The large CO2 release sped up the melting, he said.

As for CO2 emissions contributing to recent global warming, Guilderson said the CO2 release from the last ice age is not relevant.

“We can radiocarbon date the CO2 in the atmosphere now and what we’ve found is that the isotopic signature indicates that it is really due to the use of fossil fuels,” he said.

The average lifetime of CO2 in the atmosphere is on the order of 70-100 years.

Other collaborators include the University of California, Davis, the Institute of Marine and Coastal Sciences at Rutgers University, Institute of Marine Sciences at the University of California, Santa Cruz, Institu de Ciència i Tecnologia Ambientals of Spain, University of Auckland, and the Woods Hole Oceanographic Institution. Cruise participants also included individuals from Oregon State University, Texas A&M University, and international collaborators from the New Zealand Institute for Water and Air, and the Australian CSIRO.

The research was funded by the National Science Foundation.

Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne Stark | EurekAlert!
Further information:
http://www.llnl.gov

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>