Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lakes discovered beneath Greenland ice sheet

28.11.2013
The subglacial lakes are the first to be identified in Greenland

The study, published in Geophysical Research Letters, discovered two subglacial lakes 800 metres below the Greenland Ice Sheet. The two lakes are each roughly 8-10 km2, and at one point may have been up to three times larger than their current size.

Subglacial lakes are likely to influence the flow of the ice sheet, impacting global sea level change. The discovery of the lakes in Greenland will also help researchers to understand how the ice will respond to changing environmental conditions.

The study, conducted at the Scott Polar Research Institute (SPRI) at the University of Cambridge, used airborne radar measurements to reveal the lakes underneath the ice sheet.

Lead author Dr Steven Palmer, formerly of SPRI and now at the University of Exeter, stated: "Our results show that subglacial lakes exist in Greenland, and that they form an important part of the ice sheet's plumbing system. Because the way in which water moves beneath ice sheets strongly affects ice flow speeds, improved understanding of these lakes will allow us to predict more accurately how the ice sheet will respond to anticipated future warming."

The lakes are unusual compared with those detected beneath Antarctic ice sheets, suggesting that they formed in a different manner. The researchers propose that, unlike in Antarctica where surface temperatures remain below freezing all year round, the newly discovered lakes are most likely fed by melting surface water draining through cracks in the ice. A surface lake situated nearby may also replenish the subglacial lakes during warm summers.

This means that the lakes are part of an open system and are connected to the surface, which is different from Antarctic lakes that are most often isolated ecosystems.

While nearly 400 lakes have been detected beneath the Antarctic ice sheets, these are the first to be identified in Greenland. The apparent absence of lakes in Greenland had previously been explained by the fact that steeper ice surface in Greenland leads to any water below the ice being 'squeezed out' to the margin.

The ice in Greenland is also thinner than that in Antarctica, resulting in colder temperatures at the base of the ice sheet. This means that any lakes that may have previously existed would have frozen relatively quickly. The thicker Antarctic ice can act like an insulating blanket, preventing the freezing of water trapped underneath the surface.

As many surface melt-water lakes form each summer around the Greenland ice sheet, the possibility exists that similar subglacial lakes may be found elsewhere in Greenland. The way in which water flows beneath the ice sheet strongly influences the speed of ice flow, so the existence of other lakes will have implications for the future of the ice sheet.

Dr. Steven Palmer | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Earth Sciences:

nachricht Wintertime Arctic sea ice growth slows long-term decline: NASA
07.12.2018 | NASA/Goddard Space Flight Center

nachricht Why Tehran Is Sinking Dangerously
06.12.2018 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>