Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Lab researcher discovers the green in Greenland

18.04.2014

At one point in history, Greenland was actually green and not a country covered in ice.

An international team of researchers, including a former scientist from Lawrence Livermore National Laboratory, has discovered that ancient dirt in Greenland was cryogenically frozen for millions of years under nearly two miles of ice.


Former LLNL researcher Dylan Rood performs geology field work in eastern Greenland. Rood took dirt samples and analyzed them to determine that an ancient landscape millions of years old is preserved underneath the Greenland Ice Sheet.

More than 2.5 million years ago. Greenland looked like the green Alaskan tundra, before it was covered by the second largest body of ice on Earth.

The ancient dirt under the Greenland ice sheet helps to unravel an important mystery surrounding climate change: How did big ice sheets melt and grow in response to changes in temperature?

The research appears in the April 17 edition of Science Express.

"Our study demonstrates that the ice in the center of the Greenland Ice Sheet has remained stable during the climate variations of the last millions of years," said Dylan Rood, a former Lawrence Livermore scientist. "Our study adds to a body of evidence that shows how major ice sheets reacted in the past to warming, providing insights into what they could do again in the future."

An ancient landscape millions of years old is preserved underneath the Greenland Ice Sheet. The ancient dirt contains extremely large amounts of meteoric beryllium-10, which means that it had to have once sat at Earth's surface for a long time before Greenland was covered in ice. This type of beryllium-10 is produced by cosmic rays in the atmosphere and literally rains out onto the Earth's surface, where it gets stuck to soil.

The more meteoric beryllium-10 atoms in the dirt, the longer it sat at the surface.

"It is amazing that a huge ice sheet, nearly two miles thick and the second largest body of ice on Earth, didn't scrape it away," said Rood, who now works at the Scottish Universities Environmental Research Centre (SUERC).

Rood counted how many beryllium-10 atoms were in the dirt using the Center for Accelerator Mass Spectrometry (CAMS) at LLNL.

"The trick, of course, is isolating the extremely rare beryllium-10 atoms from the million billion beryllium-9 atoms in our samples," Rood said. "I'm always amazed to see how a pinhead-sized sample from dirt can be ionized and accelerated through the maze of beamlines in CAMS and then go exactly where it needs to go in order to allow us to count its individual atoms. The CAMS allows us to count these very rare beryllium-10 atoms, which is analogous to finding the one grain of sand that is different than the rest on a beach."

In the past five years or so, important advances in the ultra-sensitive and high-precision measurement of isotopes using AMS technology have revolutionized the ability of Earth scientists to understand how ice sheets have responded to past climate change.

Other institutions involved in the research include: University of Vermont, Idaho State University and University of Wyoming.

Founded in 1952, Lawrence Livermore National Laboratory provides solutions to our nation's most important national security challenges through innovative science, engineering and technology. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

Anne M Stark | Eurek Alert!

Further reports about: Accelerator Earth Environmental Greenland LLNL Laboratory Security Spectrometry temperature

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>