Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iron legacy leaves soil high in manganese

13.12.2010
Iron furnaces that once dotted central Pennsylvania may have left a legacy of manganese enriched soils, according to Penn State geoscientists. This manganese can be toxic to trees, especially sugar maples, and other vegetation.

The research, which quantified the amounts of manganese in soil core samples, was part of work done at the Shale Hills Critical Zone Observatory funded by the National Science Foundation.

"Our group's focus was to study the soil chemistry," said Elizabeth M. Herndon, graduate student in geosciences. "We saw excess manganese in the soil and decided that we needed to quantify the manganese and determine where it came from."

Typically, manganese in soils comes from the disintegration of the bedrock as soil forms. Bedrock in this area is shale and the average amount of manganese in the shale is about 800 parts per million. However, the researchers found 14,000 parts per million of manganese in some of the soil samples. This is more than 17 times as much manganese as in the bedrock.

The researchers sampled 21 sites along a ridge at Shale Hills. They took core samples from the surface down to bedrock. At 20 of the sites they found elevated manganese. The core samples, which are about 12 inches long, encompass about 7,000 years of soil formation.

"We needed to quantify how much extra manganese there actually was in the samples," said Herndon. "While soil formation puts manganese into the soil, chemical weathering and physical erosion remove manganese from the soil, so we used a mass balance model to account for these inputs and outputs."

The researchers found that "53 percent of manganese in ridge soils can be attributed to atmospheric deposition from anthropogenic sources." They reported their results online in Environmental Science and Technology.

"Because the amount of manganese in the soil was highest near the surface, the added manganese was very likely industrial pollution," said Herndon.

This area of central Pennsylvania was the site of numerous iron furnaces beginning in the late 1700s. While some furnaces stayed in operation into the 20th century, most were abandoned by the 1860s. The legacy of the ores and fuels they burned remained behind in the soil.

Although the researchers, who include Herndon, Lixin Jin, postdoctoral fellow in geosciences, and Susan L. Brantley, professor of geosciences and director of the Penn State Earth and Environmental Systems Institute, knew there was added manganese, they needed to show that the element came from industry. They looked at a location near a steel mill in Burnham, in Mifflin County and found a similar pattern of manganese concentrations in the soil suggesting that the steel mill was the source of the manganese.

They also examined datasets for soils across the United States and Europe and found that a majority of these soils have excess manganese. This may indicate that manganese pollution is not just a local phenomenon but could be widespread throughout industrialized areas.

Because manganese is naturally found in soils and is readily taken up and cycled by trees, the researchers looked to see if the pattern of manganese deposition matched that of areas where trees were manipulating the manganese. In those cases, trees move manganese from deep in the soil creating deficits near the bedrock, but concentrate the manganese nearer the surface. According to Herndon, the manganese pattern did not show a depletion near bedrock and the case for industrial pollution was strengthened.

Manganese is an exceptionally reactive element and is considered toxic if inhaled, but its presence in the soil, where it occurs naturally and is less likely to be inhaled, is not typically a danger to humans. Trees, however, may be adversely effected. While sugar maples can be detrimentally affected if they have a manganese deficiency, too much manganese can be toxic especially for saplings. High levels of manganese can also damage other vegetation and crops.

"Manganese oxides could also change the chemical properties of the soil," said Herndon. "Even if the sources of manganese pollution are no longer active, the remnants remain in the soil. I find it interesting that we have to consider the kinds of contamination left over from the past that might impact us today."

The National Science Foundation supported this work.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

nachricht Artificial Glaciers in Response to Climate Change?
10.08.2018 | Universität Heidelberg

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>