Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International study raises questions about cause of global ice ages

23.03.2015

A new international study casts doubt on the leading theory of what causes ice ages around the world -- changes in the way the Earth orbits the sun.

The researchers found that glacier movement in the Southern Hemisphere is influenced primarily by sea surface temperature and atmospheric carbon dioxide rather than changes in the Earth's orbit, which are thought to drive the advance and retreat of ice sheets in the Northern Hemisphere.


Moraines, or rocks and soil deposited by glaciers during the Last Glacial Maximum, are spread across the landscape near Mt. Cook, New Zealand's tallest mountain, and Lake Pukaki.

Credit: Aaron Putnam

The findings appear in the journal Geology. A PDF is available on request.

The study raises questions about the Milankovitch theory of climate, which says the expansion and contraction of Northern Hemisphere continental ice sheets are influenced by cyclic fluctuations in solar radiation intensity due to wobbles in the Earth's orbit; those orbital fluctuations should have an opposite effect on Southern Hemisphere glaciers.

"Records of past climatic changes are the only reason scientists are able to predict how the world will change in the future due to warming. The more we understand about the cause of large climatic changes and how the cooling or warming signals travel around the world, the better we can predict and adapt to future changes," says lead author Alice Doughty, a glacial geologist at Dartmouth College who studies New Zealand mountain glaciers to understand what causes large-scale global climatic change such as ice ages. "Our results point to the importance of feedbacks -- a reaction within the climate system that can amplify the initial climate change, such as cool temperatures leading to larger ice sheets, which reflect more sunlight, which cools the planet further. The more we know about the magnitude and rates of these changes and the better we can explain these connections, the more robust climate models can be in predicting future change."

The researchers used detailed mapping and beryllium-10 surface exposure dating of ice-age moraines - or rocks deposited when glaciers move -- in New Zealand's Southern Alps, where the glaciers were much bigger in the past. The dating method measures beryllium-10, a nuclide produced in rocks when they are struck by cosmic rays. The researchers identified at least seven episodes of maximum glacier expansion during the last ice age, and they also dated the ages of four sequential moraine ridges. The results showed that New Zealand glaciers were large at the same time that large ice sheets covered Scandinavia and Canada during the last ice age about 20,000 years ago. This makes sense in that the whole world was cold at the same time, but the Milankovitch theory should have opposite effects for the Northern and Southern Hemispheres, and thus cannot explain the synchronous advance of glaciers around the globe. Previous studies have shown that Chilean glaciers in the southern Andes also have been large at the same time as Northern Hemisphere ice sheets.

The ages of the four New Zealand ridges - about 35,500; 27,170; 20,270; and 18,290 years old -- instead align with times of cooler sea surface temperatures off the coast of New Zealand based on offshore marine sediment cores. The timing of the Northern Hemisphere's ice ages and large ice sheets is still paced by how Earth orbits the Sun, but how the cooling and warming signals are transferred around the world has not been fully explained, although ocean currents (flow direction, speed and temperature) play a significant role.

###

Alice Doughty is available to comment at Alice.M.Doughty@dartmouth.edu.

The study was conducted by scientists from Dartmouth, the University of Maine, Columbia University, GNS Science, University of Oslo, University of Waterloo, University of California-Berkeley and Lawrence Livermore National Laboratory.

Broadcast studios: Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

Media Contact

John Cramer
john.cramer@dartmouth.edu
603-646-9130

 @dartmouth

http://www.dartmouth.edu 

John Cramer | EurekAlert!

Further reports about: Dartmouth GLACIERS Hemisphere Zealand climatic changes ice sheets temperature temperatures

More articles from Earth Sciences:

nachricht Research icebreaker Polarstern begins the Antarctic season
09.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Far fewer lakes below the East Antarctic Ice Sheet than previously believed
08.11.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

The dawn of a new era for genebanks - molecular characterisation of an entire genebank collection

13.11.2018 | Life Sciences

Fish recognize their prey by electric colors

13.11.2018 | Life Sciences

Ultrasound Connects

13.11.2018 | Awards Funding

VideoLinks
Science & Research
Overview of more VideoLinks >>>