Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International Field Campaign Examines Impact of Beetle Kill on Rocky Mountain Weather, Air Quality

26.09.2008
By killing large swaths of forests in the Rocky Mountains, mountain pine beetles may be altering local weather patterns and air quality. NCAR is leading an international field project exploring how the loss of trees and other vegetation influences rainfall, temperatures, smog, and other aspects of the atmosphere.

Mountain pine beetles appear to be doing more than killing large swaths of forests in the Rocky Mountains. Scientists suspect they are also altering local weather patterns and air quality.

A new international field project, led by scientists at the National Center for Atmospheric Research (NCAR), is exploring how trees and other vegetation influence rainfall, temperatures, smog, and other aspects of the atmosphere. Plants take in and emit chemicals that affect the air, and they also absorb varying amounts of incoming heat from the Sun. When portions of a forest die, the local atmosphere can change in subtle ways.

"Forests help control the atmosphere, and there's a big difference between the impacts of a living forest and a dead forest," says NCAR scientist Alex Guenther, a principal investigator on the project. "With a dead forest, we may get different rainfall patterns, for example."

Launched this summer, the field project is scheduled to continue for four years over a region extending from southern Wyoming to northern New Mexico. Scientists plan to use aircraft and ground-based instruments, as well as computer models, to study interactions between the planet's surface and the atmosphere.

The project, known as BEACHON (pronounced "beacon"), is funded by the National Science Foundation, NCAR's sponsor. Organizations participating in the project include Colorado College, Colorado State University, Cornell University, Texas A&M University, and the universities of Colorado, Idaho, Minnesota, New Hampshire, and Washington, as well as the U.S. Forest Service, the Environmental Protection Agency, and universities in Austria, France, and Japan. BEACHON stands for Bio-hydro-atmosphere Interactions of Energy, Aerosols, Carbon, H2O, Organics, and Nitrogen.

The impacts of vegetation

BEACHON will allow scientists to glean insights into such topics as cloud formation, climate change, and the cycling of gases and particles between the land and the atmosphere. Plants emit water vapor, other gases, and microscopic particles that influence the atmosphere in subtle and complex ways.

For example, some tiny airborne particles from plants rise into clouds and seed them, providing a surface for water droplets to adhere to and develop into raindrops. Greenhouse gases such as carbon dioxide (CO2), which is emitted in large quantities from beetle-devastated forests, combine with extra CO2 produced by human activities to influence the amount of heat from the Sun that reaches Earth or gets reflected back into space. Plants also emit chemicals known as volatile organic compounds that can interact with human-caused pollution to influence the formation of particles and ground-level ozone, or smog, affecting both air quality and local temperatures.

When large areas of trees are killed by pine beetles or other causes, these interactions are disrupted. This may change cloud and precipitation patterns for a decade or more, which can, in turn, further alter the land cover.

Preliminary computer modeling suggests that beetle kill can lead to temporary temperature increases of about 2-4 degrees Fahrenheit. This is partly because of a lack of foliage to reflect the Sun's heat back into space. Scientists also believe that beetle kill stimulates trees to release more particles and chemicals into the atmosphere as they try to fight off the insects. This worsens air quality, at least initially, by increasing levels of ground-level ozone and particulate matter.

Wildfires, clear-cutting, and new development also affect the atmosphere by removing vegetation. But the impacts in each case can vary significantly, depending on the remaining vegetation and changes to soil conditions.

The exchange of gases and particles between the surface and the atmosphere is critical in arid areas such as the western United States. Even slight changes in precipitation can have significant impacts on the region.

"Here in the western United States, it is particularly important to understand these subtle impacts on precipitation," Guenther says. "Rain and snow may become even more scarce in the future as the climate changes, and the growing population wants ever more water."

A long-term project

While other field projects have measured emissions from plants, BEACHON is unusual because it will continue for at least four years and cover an entire region. This will allow researchers to examine the impacts of emissions in different seasons and measure year-to-year changes.

To conduct measurements, researchers plan to use specially equipped aircraft as well as towers that are about 100 feet high and measure emissions above the forest canopy. Additional observations will come from a variety of soil and moisture sensors, instruments for gases and tiny particles, radars, and lidars, which are radar-like devices that use light instead of radio waves.

"BEACHON will give us a very comprehensive picture of a forest's impact on the atmosphere," Guenther says. "But at this point, we don't know what the project will reveal. We may end up with more questions than answers."

The University Corporation for Atmospheric Research manages the National Center for Atmospheric Research under sponsorship by the National Science Foundation. Any opinions, findings and conclusions, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

David Hosansky | Newswise Science News
Further information:
http://www.ucar.edu

Further reports about: Aerosols Air Quality Atmospheric BEACHON CO2 Mountain NCAR Plants Rocky Mountain Weather Vegetation beetle

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>