Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into cloud formation

06.03.2012
Clouds have a profound effect on the climate, but we know surprisingly little about how they form.

Erika Sundén, researcher at the University of Gothenburg, Sweden, has studied how extremely small cloud particles can dispose of excess energy. This knowledge is necessary to understand processes in the atmosphere that affect global climate change.

The models that have been built to describe climate change contain a major source of uncertainty, namely the effects of clouds. The UN Intergovernmental Panel on Climate Change points out in its climate report for 2007 that new knowledge is needed in this field.

It is namely the case that clouds can act in two ways: they may be a mirror that reflects radiation from the sun back into space, and they may be a blanket that seals in the heat emitted by the Earth. Mapping the formation and dispersion of clouds may, therefore, be a key step in climate research.

“One important stage is understanding the fundamental properties of the particles involved”, says Erika Sundén, doctoral student at the Department of Physics, University of Gothenburg.

Ammonia may play an important role

Erika has studied small particles known as “clusters”, which contain between 3 and 300 molecules. One line of research has investigated how water clusters dissipate excess energy, and this will help to understand how water droplets grow and how they evaporate. These are the processes by which ice and liquid water are transformed into water vapour (gas).

Another line has investigated how the clusters are influenced by ammonia, which is an important component of the atmosphere.

“I investigated water clusters that contained a small fraction of ammonia, and compared these with pure water clusters. I was able to show that the ammonia contributed to the stability of the clusters, and prevented them evaporating so rapidly. It may be that ammonia plays an important role in the early stages of cloud formation”, she says.

Temperatures of -100 degrees

It is not easy to measure the heat capacity of clusters, and an important part of her research has been to develop a method that can be used in future studies. Put simply, you could say that she has created water clusters in air, drawn them into a vacuum, and then examined them as they disintegrate. This method led her to an unexpected discovery.

“The temperature inside these clusters was around -100 °C, so one would expect that their heat capacity would correspond to that of ice. Despite this, the heat capacity of medium-sized clusters was greater, intermediate between that of ice and liquid water. The importance of this for how clouds form will be the subject of further research”, she says.

New insights into space clouds

Erika Sundén presents in her thesis also studies into the cooling rate and radiation of carbon particles, which may be a component of space clouds. It has long been uncertain whether molecules can exist in the empty space between the stars and planets, since the density of atoms is so low. The first negatively charged carbon molecules were discovered in 2006, however, after which work has continued surveying the molecules that are present in space clouds.

“First radiation from space is measured, and then it’s a case of creating models that can explain the observations. We create in the lab charged molecules that may be present in these clouds, and investigate whether these molecules emit radiation and, if so, to what extent”, she says.

Erika Sundén’s thesis “Thermal Properties of Clusters and Molecules – Experiments on Evaporation, Thermionic Emission, and Radiative Cooling” was successfully defended on 24 February. It can be downloaded from: http://gupea.ub.gu.se/handle/2077/28349

For more information, please contact: Erika Sundén
E-mail: erikasunden@gmail.com
Mobile: +46 70 655 5233

Helena Aaberg | idw
Further information:
http://www.gu.se
http://gupea.ub.gu.se/handle/2077/28349

More articles from Earth Sciences:

nachricht Geochemists measure new composition of Earth’s mantle
17.09.2019 | Westfälische Wilhelms-Universität Münster

nachricht Low sea-ice cover in the Arctic
13.09.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>