Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Influence of increasing carbon dioxide levels on the seabed

09.02.2018

Storing carbon dioxide (CO2) deep below the seabed is one way to counteract the increasing concentration of CO2 in the atmosphere. But what happens if such storage sites begin to leak and CO2 escapes through the seafloor? Answers to this question have now been provided by a study dealing with the effects of CO2 emissions on the inhabitants of sandy seabed areas.

Day-in, day-out, we release nearly 100 million tons of carbon dioxide (CO2) into the atmosphere. One possible measure against steadily increasing greenhouse gases is known as CCS (carbon capture and storage): Here, the carbon dioxide is captured, preferably directly at the power plant, and subsequently stored deep in the ground or beneath the seabed.


The seafloor as a natural laboratory: Divers at work.

HYDRA/C. Lott


Diver transporting a water chemistry sensor to the study site.

HYDRA/C. Lott

However, this method poses the risk of reservoirs leaking and allowing carbon dioxide to escape from the ground into the environment. The European research project ECO2, coordinated at GEOMAR Helmholtz Centre for Ocean Research Kiel, addresses the question of how marine ecosystems react to such CO2-leaks.

The field study of an international group of researchers headed by Massimiliano Molari from the Max Planck Institute for Marine Microbiology in Bremen and Katja Guilini from the University of Ghent in Belgium, now published in Science Advances, reveals how leaking CO2 affects the seabed habitat and its inhabitants.

Substantial changes to algae, animals and microorganisms

For their study, the researchers visited natural leaks of CO2 in the sandy seabed off the coast of Sicily. They compared the local ecosystem with locations without CO2-venting. In addition, they exchanged sand between sites with and without CO2-venting in order to study how the bottom-dwellers respond and if they can adapt. Their conclusion: Increased CO2 levels drastically alter the ecosystem.

“Most of the animals inhabiting the site disappeared due to the effect of the leaking CO2”, Massimiliano Molari reports. “The functioning of the ecosystem was also disrupted – and what’s more, long-term. Even a year after the CO2-vented sediment had been transported to undisturbed sites, its typical sandy sediment community had not established.”


The researchers report the following details:

  • Together with the ascending gas bubbles, nutrients were transported to the surface. As a result, tiny algae in the sand grew much better.
  • The small and larger animals (invertebrate meio- to marofauna) inhabiting the sand were affected particularly badly by a CO2 leak: their numbers and diversity fell considerably with increasing carbon dioxide levels. The biomass of the animals dropped to a fifth, although more food was actually available due to the numerous small algae.
  • The numbers of seabed-dwelling microorganisms did not drop as CO2 increased, but their composition changed substantially.
  • The modified community of organisms led to a change in the entire ecosystem. Most inhabitants cannot adapt to the altered environmental conditions in the long term. Instead, few species, which can cope better with the increased CO2 levels, populate the sand.

“A leak in a carbon storage system beneath the sea fundamentally alters the chemistry of sandy seabeds and subsequently the function of the entire ecosystem”, Molari summarizes. “That is, there is a considerable risk that a carbon dioxide leak will harm the local ecosystem. These carbon dioxide storage systems can nevertheless globally reduce the impact of climate change.”

A first holistic overview

For the first time, this current study delivers a “holistic” view of the effects of increasing CO2 concentrations on the seafloor. It considers both biological and biogeochemical processes and different levels of the food chain, from microbes to large invertebrate animals.

CCS facilities are already in operation, for example off the Norwegian coast. Within the European Union, CCS is considered a key technology for reducing greenhouse gas emissions. “Our results clearly reveal that the site selection and planning of carbon storage systems beneath the seabed also demand a detailed study of the inhabitants and their ecosystem in order to minimize harm”, emphasizes principal investigator Antje Boetius. „Having said that, global marine protection also includes taking measures against the still high CO2-emissions.“

Original publication
Massimiliano Molari, Katja Guilini, Christian Lott, Miriam Weber, Dirk de Beer,
Stefanie Meyer, Alban Ramette, Gunter Wegener, Frank Wenzhöfer, Daniel Martin, Tamara Cibic, Cinzia De Vittor, Ann Vanreusel, Antje Boetius (2018): CO2 leakage alters biogeochemical and ecological functions of submarine sands. Sci. Adv. 2018. DOI: 0.1126/sciadv.aao2040

Participating institutes
HGF-MPG Joint Research Group on Deep Sea Ecology and Technology & Microsensor Group, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
Marine Biology Research Group, Department of Biology, Ghent University, Ghent, Belgium
HYDRA Institute for Marine Sciences, Elba Field Station, Via del Forno 80, 57034 Campo nell’Elba (LI), Italy
MARUM, Center for Marine Environmental Sciences, University Bremen, 28359 Bremen, Germany
HGF-MPG Joint Research Group on Deep Sea Ecology and Technology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, 
Germany
Centre d’Estudis Avançats de Blanes (CEAB), Consejo Superior de Investiga- ciones Cientificas (CSIC), Blanes, Girona, Catalunya, Spain
Sezione di Oceanografia, Istituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGS, I-34151 Trieste, Italy 


Please direct your queries to

Dr. Massimiliano Molari
Max Planck Institute for Marine Microbiology
Phone: +49 421 2028 867
E-Mail: mamolari@mpi-bremen.de

or the press office

Dr. Fanni Aspetsberger
Max Planck Institute for Marine Microbiology
Telefon: +49 421 2028 947
E-Mail: presse@mpi-bremen.de

Weitere Informationen:

http://www.eco2-project.eu/home.html

Video: ECO2 Panarea Expedition

Dr. Fanni Aspetsberger | Max-Planck-Institut für marine Mikrobiologie

More articles from Earth Sciences:

nachricht Tiny satellites reveal water dynamics in thousands of northern lakes
15.02.2019 | Brown University

nachricht Artificial Intelligence to boost Earth system science
14.02.2019 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

Im Focus: Famous “sandpile model” shown to move like a traveling sand dune

Researchers at IST Austria find new property of important physical model. Results published in PNAS

The so-called Abelian sandpile model has been studied by scientists for more than 30 years to better understand a physical phenomenon called self-organized...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

Terahertz wireless makes big strides in paving the way to technological singularity

19.02.2019 | Information Technology

Researchers find trigger that turns strep infections into flesh-eating disease

19.02.2019 | Health and Medicine

Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

19.02.2019 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>