Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Increased greenhouse gases and aerosols have similar effects on rainfall

02.09.2013
Although greenhouse gases and aerosols have very distinct properties, their effects on spatial patterns of rainfall change are surprisingly similar, according to new research from the University of Hawaii at Manoa's International Pacific Research Center (IPRC) and Scripps Institution of Oceanography. The study is published in the September 1 online issue of Nature Geoscience.

Manmade climate change comes mostly from the radiative forcing of greenhouse gases and air pollutants or aerosols. While greenhouse gases are well-mixed in the atmosphere and tend to be evenly distributed around the globe, aerosols vary greatly in local concentration and tend to be found near emission sources such as industrial centers in Asia and North America.

Aerosols affect climate in two ways: one is fast and perturbs the physics and behavior of clouds in minutes to days; the other effect takes years and is mediated by interactions with the ocean and atmosphere. The fast effects of aerosols on clouds have been studied intensely, but their long-term ocean-mediated effect has received little attention.

A team of scientists at the IPRC and Scripps has now provided important new insights based on results from experiments with three state-of-the-art climate models. Even though aerosols and greenhouse gases are concentrated in vastly different regions of the earth, all three models revealed similar regional effects on rainfall over the ocean.

"This came as a big surprise to us," reflected lead-author Shang-Ping Xie, a professor of climate science and first Roger Revelle Chair in Environmental Science at Scripps. "It took a while for the result to sink in. The result means that it is hard to tell apart the greenhouse and aerosol effects."

The scientists noted that both aerosol-induced and greenhouse-gas-induced changes in rainfall appear to be mediated by the spatial patterns of sea surface temperature.

"Although much of the aerosol research has focused on microphysical processes, over the ocean the climate response to aerosols appears to be insensitive to details of the micro-processes in clouds," Xie said. "The climate changes induced by greenhouse gases and by aerosols share a common set of ocean-atmospheric feedback structures, explaining the spatial resemblance between the two types of response."

"Innovative model experiments are now needed," says coauthor Baoqiang Xiang, postdoctoral fellow at the IPRC. We want to probe the ocean-atmosphere interaction mechanisms that mediate these rainfall patterns and to determine what forms the foundation. This will allow us to develop more reliable regional climate projections."

Citation: Xie, S.-P., B. Lu, and B. Xiang: Similar spatial patterns of climate responses to aerosol and greenhouse gas changes. Nature Geoscience, doi: 10.1038/ngeo1931. Advance Online Publication: September 1, 2013.

This work was supported by the NSF (ATM-0854365), the National Basic Research Program of China (2012CB955600), the NOAA Climate Program Office (NA08OA4320910), the China Scholarship Council and the Japan Agency for Marine-Earth Science and Technology.

Author Contact:

Shang-Ping Xie, currently at: sxie@ucsd.edu, (858) 822-0053, Scripps Institution of Oceanography.

Bo Lu, currently at: lblblbdfs@pku.edu.cn, National Climate Center, China Meteorological Administration, Beijing, China

Baoqiang Xiang, currently at: Baoqiang@hawaii.edu, (808) 956-2453, International Pacific Research Center, University of Hawaii at Manoa.

International Pacific Research Center Media Contact:

Gisela E. Speidel, gspeidel@hawaii.edu. (808) 956-9252.

The International Pacific Research Center (IPRC) of the School of Ocean and Earth Science and Technology (SOEST) at the University of Hawaii at Manoa, is a climate research center founded to gain greater understanding of the climate system and the nature and causes of climate variation in the Asia-Pacific region and how global climate changes may affect the region. Established under the "U.S.-Japan Common Agenda for Cooperation in Global Perspective" in October 1997, the IPRC is a collaborative effort between agencies in Japan and the United States.

Gisela Speidel | EurekAlert!
Further information:
http://www.hawaii.edu

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>