Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Inaugural deployment of buoys to measure air and sea interactions in typhoons launched from Taiwan

11.08.2010
An international team of scientists and technicians from the University of Miami (UM) Rosenstiel School, the University of Leeds in the United Kingdom, Woods Hole Oceanographic Institution, and Environment Canada are participating in a groundbreaking buoy deployment that will help them to better understand interactions between the ocean and atmosphere during typhoons. The research is funded by the U.S. Office of Naval Research.

The R/V Revelle, a Scripps research vessel departed from the port of Kao-hsiung, Taiwan with two tandem buoy sets onboard: the boat-shaped EASI (Extreme Air-Sea Interaction) buoy and the ASIS (Air-Sea Interaction Spar) buoy. This is the first time these buoys will be used in the typhoon-prone Western Pacific. In the past, these buoy deployments have taken place in the Atlantic Ocean during hurricane season, and on separate experiments in the Southern Ocean and Labrador Sea.

The researchers are deploying the two sets of buoys in tandem, about � miles southeast of Taiwan to thoroughly test them in typhoon force conditions. The buoys will be out at sea for 3 months collecting valuable data that scientists will use to understand the exchange dynamics and fluxes occurring between the atmosphere and ocean during the intense typhoon conditions.

"We have successfully used these buoys to measure air-sea interactions and wave dynamics in the Atlantic in a variety of storm conditions and are now looking forward to applying this technology to the western Pacific where super typhoons develop quite frequently," said the PI of this project, Dr. Hans Graber, professor and executive director of UM's Center for Southeastern Tropical Advanced Remote Sensing. "In the last several years we have added new technologies and improved the data collection capabilities of these buoys as well as made the buoys more robust to withstand extreme weather conditions. In addition we will also be using satellite telecommunications to query the buoys routinely from Miami and retrieve data. "

The buoys will measure the momentum, heat, and moisture exchange between the air atmosphere and ocean at the midst of tropical cyclones. This information will help improve weather forecast models that predict typhoon intensity. It will also give the research community a better idea of the distribution of wind and how force is distributed. There will be sonic anemometers (acoustic devices that measure wind speed and stress at high resolution) and a suite of other sensors that measure air temperature, humidity, and water temperature. The buoys will also have ADCPs (acoustic Doppler current profilers) to measure currents as a function of depth, as well as temperature probes in the upper ocean and acoustic devices to measure turbulence near the surface. A strong set of piano-like wires arranged in a pentagon will measure small scale details of the ocean surface (roughness) and the directional properties of waves.

"The buoys feature a Compact Lightweight Aerosol Spectrometer (CLASP) device that measures the near-surface marine aerosol production mechanisms, or sea spray from wave-breaking events that result from typhoon force winds," said Dr. Will Drennan, UM professor and associate dean of undergraduate studies for the Rosenstiel School. "These measurements could be especially important as the spray layer has a significant impact on the drag coefficient, a key parameter used in creating weather forecast models."

The team includes several people from UM, including applied marine physics professors Hans Graber and Will Drennan, associate scientist Neil Williams, marine technician Mike Rebozo, post-doctoral researchers Rafael Ramos and Michelle Gierach, graduate students Björn Lund, Henry Potter, Tripp Collins and Sharein El-Tourky, and undergraduate Marine Science student Anibal Herrera. They are joined by Joe Gabriele and Cary Smith of Environment Canada, John Kemp, Jim Dunn and Jim Ryder of Woods Hole Oceanographic Institution and Dr. Ian Brooks of the University of Leeds, UK.

About the University of Miami's Rosenstiel School

The University of Miami is the largest private research institution in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life.

Barbra Gonzalez | EurekAlert!
Further information:
http://www.rsmas.miami.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>