Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In these microbes, iron works like oxygen

18.04.2016

A pair of papers from a UW-Madison geoscience lab shed light on a curious group of bacteria that use iron in much the same way that animals use oxygen: to soak up electrons during biochemical reactions. When organisms -- whether bacteria or animal -- oxidize carbohydrates, electrons must go somewhere.

The studies can shed some light on the perennial question of how life arose, but they also have slightly more practical applications in the search for life in space, says senior author Eric Roden, a professor of geoscience at UW-Madison.


The steamy volcanic vent at Chocolate Pot hot spring in Yellowstone National Park, an iron-rich but relatively cool hot spring where a variety of fascinating microorganisms thrive without oxygen. These microbes respire solid iron much as humans breathe oxygen.

Courtesy of Nathaniel W. Fortney

Animals use oxygen and "reduce" it to produce water, but some bacteria use iron that is deficient in electrons, reducing it to a more electron-rich form of the element. Ironically, electron-rich forms of iron can also supply electrons in the opposite "oxidation" reaction, in which the bacteria literally "eat" the iron to get energy.

Iron is the fourth-most abundant element on the planet, and because free oxygen is scarce underwater and underground, bacteria have "thought up," or evolved, a different solution: moving electrons to iron while metabolizing organic matter.

These bacteria "eat organic matter like we do," says Roden. "We pass electrons from organic matter to oxygen. Some of these bacteria use iron oxide as their electron acceptor. On the flip side, some other microbes receive electrons donated by other iron compounds. In both cases, the electron transfer is essential to their energy cycles."

Whether the reaction is oxidation or reduction, the ability to move an electron is essential for the bacteria to process energy to power its lifestyle.

Roden has spent decades studying iron-metabolizing bacteria. "I focus on the activities and chemical processing of microorganisms in natural systems," he says. "We collect material from the environment, bring it back to the lab, and study the metabolism through a series of geochemical and microbiological measurements."

The current studies focus on bacteria samples from Chocolate Pot hot spring, a relatively cool geothermal spring in Yellowstone National Park that is named for the dark, reddish-brown color of ferric oxide. Related studies deal with a culture obtained from a much less auspicious environment -- a ditch in Germany. Both studies are online, in Applied and Environmental Microbiology and in Geobiology.

During the studies, Roden and doctoral student Nathan Fortney and research scientist Shaomei He explored how the cultured organisms changed the oxidation state -- the number of electrons -- in the iron compounds. They also used an advanced genome-sequencing instrument at the UW-Madison Biotechnology Center to identify strings of DNA in the genomes.

"More than 99 percent of microbial diversity cannot be obtained in pure culture," says He, meaning they cannot be grown as a single strain for analysis. "Instead of going through the long, laborious and often unsuccessful process of isolating strains, we apply genomic tools to understand how the organisms were doing what they were doing in mixed communities."

The researchers found some unknown bacteria capable of iron metabolism, and also got genetic data on a unique capacity that some of them have: the ability to transport electrons in both directions across the cell's outer membrane. "Bacteria have not only evolved a metabolism that opens niches to use iron as an energy," says He, "but these new electron transport mechanisms give them a way to use forms of iron that can't be brought inside the cell."

"These are fundamental studies, but these chemical transformations are at the heart of all kinds of environmental systems, related to soil, sediment, groundwater and waste water," says Roden. "For example, the Department of Energy is interested in finding a way to derive energy from organic matter through the activity of iron-metabolizing bacteria." These bacteria are also critical to the life-giving process of weathering rocks into soil.

Iron-metabolizing bacteria have been known for a century, Roden says, and were actually discovered in Madison-area groundwater. "Geologists saw organisms that formed these unique structures that were visible under the light microscope. They formed stalks or sheaths, and it turned out they were used to move iron."

Roden and He are geobiologists, interested in how microbes affect geology, but the significance of microbes in Earth's evolution is only now being fully appreciated, Roden says. "Eyebrows rose when we contacted the Biotech Center three or four year ago to discuss sequencing: 'Who are these people from geology, and what are they talking about?' But we stuck with it, and it's turned into a pretty cool collaboration that has allowed us to apply their excellent tools that are more typically applied to biomedical and related microbial issues."

Some of the iron-metabolizing bacteria appear quite early on the tree of life, making the studies relevant to discovering the origins of life, but the findings also have implications in the search for life in space, Roden says. "Our support comes from NASA's astrobiology institute at UW-Madison. It's possible that on a rocky planet like Mars, life could rely on iron metabolism instead of oxygen.

"A fundamental approach in astrobiology is to use terrestrial sites as analogs, where we look for insight into the possibilities on other worlds," Roden continues. "Some people believe that use of iron oxide as an electron acceptor could have been the first, or one of the first, forms of respiration on Earth. And there's so much iron around on the rocky planets."

###

CONTACT:

Eric Roden
cell 608-443-9048, office 608-890-0724
eroden@geology.wisc.edu

http://www.wisc.edu 

Eric Roden | EurekAlert!

Further reports about: Electrons bacteria iron compounds iron oxide microbes microbial

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>