Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hydrogen highway in the deep sea

11.08.2011
Max Planck Researchers discover hydrogen-powered symbiotic bacteria in deep-sea hydrothermal vent mussels

The search for new energy sources to power mankind’s increasing needs is currently a topic of immense interest. Hydrogen-powered fuel cells are considered one of the most promising clean energy alternatives. While intensive research efforts have gone into developing ways to harness hydrogen energy to fuel our everyday lives, a natural example of a living hydrogen-powered ‘fuel cell’ has gone unnoticed.


At the Black Smokers in 3000 meter depth there live exceptional symbiotic communities.
Marum


The mussel beds at hydrothermal vents form a teeming expanse that contains an estimated half a million mussels.
Marum

During a recent expedition to hydrothermal vents in the deep sea, researchers from the Max Planck Institute of Marine Microbiology and the Cluster of Excellence MARUM discovered mussels that have their own on-board ‘fuel cells’, in the form of symbiotic bacteria that use hydrogen as an energy source. Their results, which appear in the current issue of Nature, suggest that the ability to use hydrogen as a source of energy is widespread in hydrothermal vent symbioses.

Deep-sea hydrothermal vents are formed at mid-ocean spreading centers where tectonic plates drift apart and new oceanic crust is created by magma rising from deep within the Earth. When seawater interacts with hot rock and rising magma, it becomes superheated, dissolving minerals out of the Earth’s crust. At hydrothermal vents, this superheated energy-laden seawater gushes back out into the ocean at temperatures of up to 400 degrees Celsius, forming black smoker chimneys where it comes into contact with cold deep-sea water. These hot fluids deliver inorganic compounds such as hydrogen sulfide, ammonium, methane, iron and hydrogen to the oceans. The organisms living at hydrothermal vents oxidize these inorganic compounds to gain the energy needed to create organic matter from carbon dioxide. Unlike on land, where sunlight provides the energy for photosynthesis, in the dark depths of the sea, inorganic chemicals provide energy for life in a process called chemosynthesis.

When hydrothermal vents were first discovered more than 30 years ago, researchers were astounded to find that they were inhabited by lush communities of animals such as worms, mollusks and crustaceans, most of which were completely unknown to science. The first to investigate these animals quickly realized that the key to their survival was their symbiotic association with chemosynthetic microbes, which are the on-board power plants for hydrothermal vent animals. Until now, only two sources of energy were known to power chemosynthesis by symbiotic bacteria at hydrothermal vents: Hydrogen sulfide, used by sulfur-oxidizing symbionts, and methane, used by methane-oxidizing symbionts. “We have now discovered a third energy source” says Nicole Dubilier from the Max Planck Institute of Marine Microbiology in Bremen, who led the team responsible for this discovery.

The discovery began at the Logatchev hydrothermal vent field, at 3000 m depth on the Mid-Atlantic Ridge, an undersea mountain range halfway between the Caribbean and the Cape Verde Islands. The highest hydrogen concentrations ever measured at hydrothermal vents were recorded during a series of research expeditions to Logatchev. According to Jillian Petersen, a researcher with Nicole Dubilier, “our calculations show that at this hydrothermal vent, hydrogen oxidation could deliver seven times more energy than methane oxidation, and up to 18 times more energy than sulfide oxidation”.

In the gills of the deep-sea mussel Bathymodiolus puteoserpentis, one of the most abundant animals at Logatchev, the researchers discovered a sulfur-oxidizing symbiont that can also use hydrogen as an energy source. To track down these hydrogen-powered on-board ‘fuel cells’ in the deep-sea mussels, the researchers deployed two deep-sea submersibles, MARUM-QUEST from MARUM at the University of Bremen, and KIEL 6000 from IFM-GEOMAR in Kiel. With the help of these remotely-driven submersibles, they sampled mussels from sites kilometers below the sea surface. Their ship-board experiments with live samples showed that the mussels consumed hydrogen. Once the samples were back in the laboratory on land, they were able to identify the mussel symbiont hydrogenase, the key enzyme for hydrogen oxidation, using molecular techniques.

The mussel beds at Logatchev form a teeming expanse that covers hundreds of square meter and contains an estimated half a million mussels. “Our experiments show that this mussel population could consume up to 5000 liters of hydrogen per hour” according to Frank Zielinski, a former doctoral student in Nicole Dubilier’s Group in Bremen, who now works as a post-doctoral researcher at the Helmholtz Centre for Environmental Research in Leipzig. The deep-sea mussel symbionts therefore play a substantial role as the primary producers responsible for transforming geofuels to biomass in these habitats. “The hydrothermal vents along the mid-ocean ridges that emit large amounts of hydrogen can therefore be likened to a hydrogen highway with fuelling stations for symbiotic primary production” says Jillian Petersen.

Even the symbionts of other hydrothermal vent animals such as the giant tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata have the key gene for hydrogen oxidation, but remarkably, this had not been previously recognized. “The ability to use hydrogen as an energy source seems to be widespread in these symbioses, even at hydrothermal vent sites with low amounts of hydrogen” says Nicole Dubilier.

This study was supported by the Max Planck Society, the German Research Foundation (Priority program 1144: “From Mantle to Ocean: Energy-, Material- and Life Cycles at Spreading Axes’’), and the Cluster of Excellence “The Ocean in the Earth System” at MARUM, Bremen.

Publication reference

Jillian M. Petersen, Frank U. Zielinski, Thomas Pape, Richard Seifert, Cristina Moraru, Rudolf Amann, Stephane Hourdez, Peter R. Girguis, Scott D. Wankel, Valerie Barbe, Eric Pelletier, Dennis Fink, Christian Borowski, Wolfgang Bach, Nicole Dubilier
Hydrogen is an energy source for hydrothermal vent symbioses
Nature 474, 11 August 2011. doi: 10.1038/nature10325
Contact
Dr. Nicole Dubilier
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 421 2028-932
Fax: +49 421 2028-580
Email: ndubilie@mpi-bremen.de
Dr. Jillian Petersen
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 421 2028-906
Email: jmpeters@mpi-bremen.de
Dr. Frank Zielinski
Helmholtz-Zentrum für Umweltforschung (UFZ)
Phone: +49 341 235-1373

Barbara Abrell | Max-Planck-Institut
Further information:
http://www.mpg.de/
http://www.mpg.de/790458/W003_Biology-Medicine_062-069.pdf

More articles from Earth Sciences:

nachricht New research calculates capacity of North American forests to sequester carbon
16.07.2018 | University of California - Santa Cruz

nachricht Scientists discover Earth's youngest banded iron formation in western China
12.07.2018 | University of Alberta

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>