Hurricanes can be 50 percent stronger if passing over fresh water, says Texas A&M study

Ping Chang, professor of oceanography and atmospheric sciences and director of the Texas Center for Climate Studies, along with his former student, Karthik Balaguru, now at the Department of Energy's Pacific Northwest National Laboratory, are the lead authors of a paper in the current issue of PNAS (Proceedings of the National Academy of Sciences).

Their findings could benefit weather experts as they try to predict the path and strength of a hurricane, noting that about 60 percent of the world's population resides in areas that are prone to hurricanes or cyclones.

Chang and Balaguru and their colleagues examined Tropical Cyclones for the decade 1998-2007, which includes about 587 storms, paying particular attention to Hurricane Omar. Omar was a Category 4 hurricane that formed in 2008 and eventually caused about $80 million in damages in the south Caribbean area.

They analyzed data from the oceanic region under the storm, including the salt and temperature structure of the water and other factors that played a part in the storm's intensity.

“We tested how the intensity of the storm and others increased over a 36-hour period,” Chang explains.

“We were looking for indications that the storm increased in intensity or weakened and compared it to other storms. This is near where the Amazon and Orinoco Rivers flow into the Atlantic Ocean, and there are immense amounts of freshwater in the region. We found that as a storm enters an area of freshwater, it can intensify 50 percent faster on average over a period of 36 hours when compared to storms that do not pass over such regions.”

The researchers believe their results could help in predicting a hurricane's strength as it nears large river systems that flow into oceans, such as the Amazon in the Atlantic, the Ganges in the Indian Ocean or even the Mississippi River into the Gulf of Mexico.

Hurricanes – called typhoons in the Pacific region and cyclones in the Indian region – are some of the most devastating natural hazards on Earth. A single storm, Cyclone Nargis in 2008, killed more than 138,000 people in Burma and caused $10 billion in damages.

“If we want to improve the accuracy of hurricane forecasting, we need to have a better understanding of not only the temperature, but also the salinity structure of the oceanic region under the storm,” Chang notes.

“If we know a hurricane's likely path, we can project if it might become stronger when nearing freshwater regions. This is another tool to help us understand how a storm can intensify.”

The team's work was funded by grants from the National Science Foundation, the Department of Energy and the National Science Foundation of China. About Research at Texas A&M University: As one of the world's leading research institutions, Texas A&M is in the vanguard in making significant contributions to the storehouse of knowledge, including that of science and technology. Research conducted at Texas A&M represents an annual investment of more than $700 million. That research creates new knowledge that provides basic, fundamental and applied contributions resulting in many cases in economic benefits to the state, nation and world. Media contact: Keith Randall, News & Information Services, at (979) 845-4644 or keith-randall@tamu.edu; or Ping Chang at (979) 845-8196 or ping@tamu.edu

More news about Texas A&M University, go to http://tamutimes.tamu.edu/

Follow us on Twitter at http://twitter.com/tamu/

Media Contact

Keith Randall EurekAlert!

More Information:

http://www.tamu.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors