Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Humans causing erosion comparable to world’s largest rivers and glaciers

03.09.2009
A new study finds that large-scale farming projects can erode the Earth's surface at rates comparable to those of the world's largest rivers and glaciers.

Published online in the journal Nature Geoscience, the research offers stark evidence of how humans are reshaping the planet. It also finds that - contrary to previous scholarship - rivers are as powerful as glaciers at eroding landscapes.

"Our initial goal was to investigate the scientific claim that rivers are less erosive than glaciers," says Michele Koppes, a professor of geography at the University of British Columbia (UBC) and lead author of the study.

"But while exploring that, we found that many of the areas currently experiencing the highest rates of erosion are being caused by climate change and human activity such as modern agriculture," says Koppes, who conducted the study with David Montgomery of the University of Washington.

In some cases, the researchers found large-scale farming eroded lowland agricultural fields at rates comparable to glaciers and rivers in the most tectonically active mountain belts.

"This study shows that humans are playing a significant role in speeding erosion in low lying areas," says Koppes. "These low-altitude areas do not have the same rate of tectonic uplift, so the land is being denuded at an unsustainable rate."

Koppes says other significant causes of low-altitude erosion include glacier melting caused by climate change and volcanic eruptions.

The highest erosion rates have typically been seen at high altitudes where tectonic forces pit rising rock against rivers and glaciers, says Koppes, who with Montgomery created with an updated database of erosion rates for more than 900 rivers and glaciers worldwide, documented over the past decade with new geologic measuring techniques.

Contrary to previous scholarship, they found that rivers and glaciers in active mountain ranges are both capable of eroding landscapes by more than one centimetre per year. Studies had previously indicated that glaciers could erode landscapes as much as 10 times faster than rivers, Koppes says.

Basil Waugh | EurekAlert!
Further information:
http://www.ubc.ca
http://www.nature.com/ngeo/journal/vaop/ncurrent/abs/ngeo616.html

More articles from Earth Sciences:

nachricht Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide
15.08.2018 | University of Washington

nachricht Algorithm provides early warning system for tracking groundwater contamination
14.08.2018 | DOE/Lawrence Berkeley National Laboratory

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>