Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Water Could Have Flowed on Mars

19.11.2014

A new model suggests volcanic activity in Mars’ distant past spewed enough greenhouse gases to melt ice and warm the atmosphere

Why does the cold, barren surface of Mars contain geological features that appear to have been formed by flowing water: river valleys, lake basins, and deltas? A new model, published online in Nature Geoscience, suggests that sulfur spewed into the Martian atmosphere by ancient volcanoes could have periodically warmed the surface enough for the ice to melt and water to flow.


Weizmann Institute of Science

Satellite image of Olympus Mons on Mars, the largest volcano in the solar system at about three times the height of Mount Everest. Around 3.5 to 4 billion years ago, the release of volcanic gases, especially the greenhouse gas sulfur dioxide, may have warmed the surface of Mars episodically, melting the ice and thereby explaining the presence of geomorphological features indicative of the flow of water on the planet’s ancient surface.

Indeed, the signs of flowing water have been a puzzle, as the latest generation of climate models portrays Mars as an eternally ice-cold planet with all of its water frozen solid, especially early in its history, when the Sun was weaker than it is today.

Today, most of that water is locked in polar caps. Dr. Itay Halevy of the Weizmann Institute of Science’s Department of Earth and Planetary Sciences and Dr. James Head III of Brown University thought the answer might lie in the now dormant volcanoes on the planet’s surface, which could have played a larger role than previously thought in shaping its climate.

On Earth, volcanic emissions – sulfur compounds and ash – tend to cool the climate. But in the presumably dusty early atmosphere of Mars, the net effects might have been different. To understand their impact, Drs. Halevy and Head first calculated the size of ancient volcanic eruptions, based on the volcanic rock formations observed on the planetary surface today.

Their estimations show that the eruptions were violent – hundreds of times the force of the average eruption on Earth – and may have lasted up to a decade. This means that the amounts of gases spewed from the mouths of these volcanoes, from what we know of Earth’s eruptions, must have been enormous.

The team’s simulations showed large amounts of the greenhouse gas sulfur dioxide mixing into the atmosphere. But warming caused by the sulfur dioxide was thought to be outweighed by cooling due to the creation of sun-blocking sulfuric acid particles, which form as sulfur dioxide reacts in the atmosphere.

Drs. Halevy and Head showed that, in an atmosphere already as dusty as that of Mars, the sulfuric acid mostly forms thin coatings around particles of mineral dust and volcanic ash, subduing the added cooling. The net effect, according to the model the scientists created, was modest warming – just enough to allow water to flow at low latitudes on either side of the planet’s equator.

Liquid water may have flowed in these regions for tens to hundreds of years during and immediately after volcanic eruptions. The model suggests that during these brief, but intense, wet periods, the surface of the planet could have been carved by flowing rivers and streams.

Dr. Itay Halevy’s research is supported by the Sir Charles Clore Research Prize; the Carolito Stiftung; the estate of Olga Klein Astrachan; and the European Research Council.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world’s top-ranking multidisciplinary research institutions. The Institute’s 3,800-strong scientific community engages in research addressing crucial problems in medicine and health, energy, technology, agriculture, and the environment. Outstanding young scientists from around the world pursue advanced degrees at the Weizmann Institute’s Feinberg Graduate School. The discoveries and theories of Weizmann Institute scientists have had a major impact on the wider scientific community, as well as on the quality of life of millions of people worldwide.

Contact Information
Jennifer Manning
Director, Science Content
jennifer@acwis.org
Phone: 212-895-7952

Jennifer Manning | newswise
Further information:
http://www.weizmann-usa.org/news-media/news-releases.aspx

More articles from Earth Sciences:

nachricht Scientists turn carbon emissions into usable energy
21.01.2019 | Ulsan National Institute of Science and Technology (UNIST)

nachricht Ten-year anniversary of the Neumayer Station III
18.01.2019 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ten-year anniversary of the Neumayer Station III

The scientific and political community alike stress the importance of German Antarctic research

Joint Press Release from the BMBF and AWI

The Antarctic is a frigid continent south of the Antarctic Circle, where researchers are the only inhabitants. Despite the hostile conditions, here the Alfred...

Im Focus: Ultra ultrasound to transform new tech

World first experiments on sensor that may revolutionise everything from medical devices to unmanned vehicles

The new sensor - capable of detecting vibrations of living cells - may revolutionise everything from medical devices to unmanned vehicles.

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Elucidating the Atomic Mechanism of Superlubricity

The phenomenon of so-called superlubricity is known, but so far the explanation at the atomic level has been missing: for example, how does extremely low friction occur in bearings? Researchers from the Fraunhofer Institutes IWM and IWS jointly deciphered a universal mechanism of superlubricity for certain diamond-like carbon layers in combination with organic lubricants. Based on this knowledge, it is now possible to formulate design rules for supra lubricating layer-lubricant combinations. The results are presented in an article in Nature Communications, volume 10.

One of the most important prerequisites for sustainable and environmentally friendly mobility is minimizing friction. Research and industry have been dedicated...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Our digital society in 2040

16.01.2019 | Event News

11th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Aachen, 3-4 April 2019

14.01.2019 | Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

 
Latest News

Scientists discover new 'architecture' in corn

21.01.2019 | Life Sciences

Broadband achromatic metalens focuses light regardless of polarization

21.01.2019 | Physics and Astronomy

Nuclear actin filaments determine T helper cell function

21.01.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>