Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How predatory plankton created modern ecosystems after ‘Snowball Earth’

29.01.2019

Around 635 to 720 million years ago, during Earth’s most severe glacial period, the Earth was twice almost completely covered by ice, according to current hypotheses. The question of how life survived these ‘Snowball Earth’ glaciations, lasting up to about 50 million years, has occupied the most eminent scientists for many decades. An international team, led by Dutch and German researchers of the Max Planck Society, now found the first detailed glimpse of life after the ‘Snowball' in the form of newly discovered ancient molecules, buried in old rocks.

‘All higher animal life forms, including us humans, produce cholesterol. Algae and bacteria produce their own characteristic fat molecules.’ says first author Lennart van Maldegem from Max Planck Institute (MPI) for Biogeochemistry, who recently moved to the Australian National University in Canberra, Australia.


Lennart van Maldegem on the Nankoweap Butte, Grand Canyon National Park, USA.

Foto: Pierre Sansjofre

‘Such fat molecules can survive in rocks for millions of years, as the oldest (chemical) remnants of organisms, and tell us now what type of life thrived in the former oceans long ago’.

But the fossil fats the researchers recently discovered in Brazilian rocks, deposited just after the last Snowball glaciation, were not what they suspected. ‘Absolutely not’, says team-leader Christian Hallmann from MPI for Biogeochemistry, ‘we were completely puzzled, because these molecules looked quite different from what we’ve ever seen before!’

Using sophisticated separation techniques, the team managed to purify minuscule amounts of the mysterious molecule and identify its structure by nuclear magnetic resonance in the NMR department of Christian Griesinger at Max Planck Institute for Biophysical Chemistry.

‘This is highly remarkable itself’ according to Klaus Wolkenstein from MPI for Biophysical Chemistry and the Geoscience Centre of the University of Göttingen: ‘Never has a structure been elucidated with such a small amount of such an old molecule’. The structure was chemically identified as 25,28-bisnorgammacerane — abbreviated as BNG as van Maldegem suggests.

Yet the origin of the compound remained enigmatic. ‘We of course looked if we could find it elsewhere’ says van Maldegem, who then studied hundreds of ancient rock samples, with rather surprising success. ‘In particular the Grand Canyon rocks really were an eye-opener’ says Hallmann.

Although nowadays mostly sweltering hot, these rocks had also been buried under kilometres of glacial ice around 700 million years ago. Detailed additional analyses of molecules in Grand Canyon rocks—including presumed BNG-precursors, the distribution of steroids and stable carbon isotopic patterns—led the authors to conclude that the new BNG molecule most likely derives from heterotrophic plankton, marine microbes that rely on consuming other organisms for gaining energy.

'Unlike for example green algae that engage in photosynthesis and thus belong to autotrophic organisms, these heterotrophic microorganisms were true predators that gained energy by hunting and devouring other algae and bacteria’ according to van Maldegem.

While predation is common amongst plankton in modern oceans, the discovery that it was so prominent 635 million years ago, exactly after the Snowball Earth glaciation, is a big deal for the science community. ‘Parallel to the occurrence of the enigmatic BNG molecule we observe the transition from a world whose oceans contained virtually only bacteria, to a more modern Earth system containing many more algae.

We think that massive predation helped to ‘clear’ out the bacteria-dominated oceans and make space for algae’ says van Maldegem. The resulting more complex feeding networks provided the dietary requirements for larger, more intricate lifeforms to evolve—including the lineages that all animals, and eventually we humans, derive from.

The massive onset of predation probably played a crucial role in the transformation of our planet and its ecosystems to its present state.

Wissenschaftliche Ansprechpartner:

Dr. Christian Hallmann
Max Planck Research Group Leader
Universität Bremen, Building IW-3
Am Biologischen Garten 2
28359 Bremen, Germany

Phone: +49 (0)421 218 65 820

challmann@bgc-jena.mpg.de

Originalpublikation:

Lennart M. van Maldegem, Pierre Sansjofre, Johan W. H. Weijers, Klaus Wolkenstein, Paul K. Strother, Lars Wörmer, Jens Hefter, Benjamin J. Nettersheim, Yosuke Hoshino, Stefan Schouten, Jaap S. Sinninghe Damsté, Nilamoni Nath, Christian Griesinger, Nikolay B. Kuznetsov, Marcel Elie, Marcus Elvert, Erik Tegelaar, Gerd Gleixner, Christian Hallmann (2019).
Bisnorgammacerane traces predatory pressure and the persistent rise of algal ecosystems after Snowball Earth.
Nature Communications
DOI 10.1038/s41467-019-08306-x

Weitere Informationen:

https://oc.bgc-jena.mpg.de/index.php/s/1nKlnZ50ZuOEc3h Additional pictures
http://10.1038/s41467-019-08306-x doi of publication

Dr. Eberhard Fritz | Max-Planck-Institut für Biogeochemie
Further information:
http://www.bgc-jena.mpg.de

More articles from Earth Sciences:

nachricht Most of Earth's carbon was hidden in the core during its formative years
02.04.2020 | Smithsonian

nachricht A sensational discovery: Traces of rainforests in West Antarctica
02.04.2020 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

Im Focus: Blocking the Iron Transport Could Stop Tuberculosis

The bacteria that cause tuberculosis need iron to survive. Researchers at the University of Zurich have now solved the first detailed structure of the transport protein responsible for the iron supply. When the iron transport into the bacteria is inhibited, the pathogen can no longer grow. This opens novel ways to develop targeted tuberculosis drugs.

One of the most devastating pathogens that lives inside human cells is Mycobacterium tuberculosis, the bacillus that causes tuberculosis. According to the...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

“4th Hybrid Materials and Structures 2020” takes place over the internet

26.03.2020 | Event News

Most significant international Learning Analytics conference will take place – fully online

23.03.2020 | Event News

 
Latest News

Capturing 3D microstructures in real time

03.04.2020 | Materials Sciences

First SARS-CoV-2 genomes in Austria openly available

03.04.2020 | Life Sciences

Do urban fish exhibit impaired sleep? Light pollution suppresses melatonin production in European perch

03.04.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>